

LD29080

800 mA fixed and adjustable output very low drop voltage regulator

Орак Орак РРАК DРАК БОТ223 SOT223

Features

- Very low dropout voltage (typ. 0.4 at 800 mA)
- Guaranteed output current up to 800 mA

- Datasheet production data
- Fixed and adjustable output voltage (± 1 % at 25 °C)
- Internal current and thermal limit
- Logic controlled electronic shutdown

Description

The LD29080 is a medium current, high accuracy, low-dropout voltage regulators series. These regulators feature 400 mV dropout voltage and very low ground current. Designed for medium current loads, these devices also find applications in lower current, extremely low dropout-critical systems, where their tiny dropout voltage and ground current values are important attributes. Typical application are in power supply switching post regulation, series power supply for monitors, series power supply for VCRs and TVs, computer systems and battery powered systems.

Table 1. Device summary

	Order codes		Output voltages	
DPAK (tape and reel)	PPAK (tape and reel)	SOT223	 Output voltages 	
LD29080DT15R	LD29080PT15R		1.5 V	
LD29080DT18R	LD29080PT18R		1.8 V	
LD29080DT25R	LD29080PT25R		2.5 V	
LD29080DT33R	LD29080PT33R	LD29080S33R	3.3 V	
LD29080DT50R	LD29080PT50R		5.0 V	
LD29080DT90R	LD29080PT90R		9.0 V	
	LD29080PTR		ADJ	

This is information on a product in full production.

Contents

1	Diagram
2	Pin configuration
3	Maximum ratings
4	Electrical characteristics
5	Typical characteristics 14
6	Package mechanical data 17
7	Packaging mechanical data 23
8	Revision history

1 Diagram

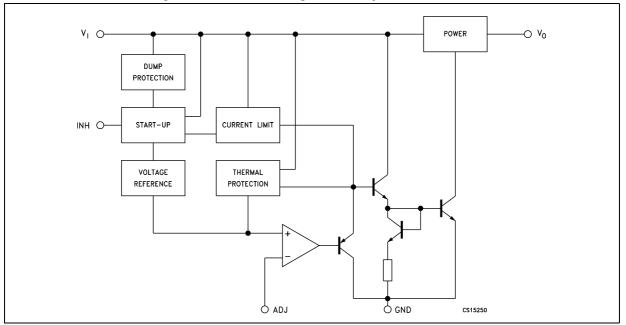
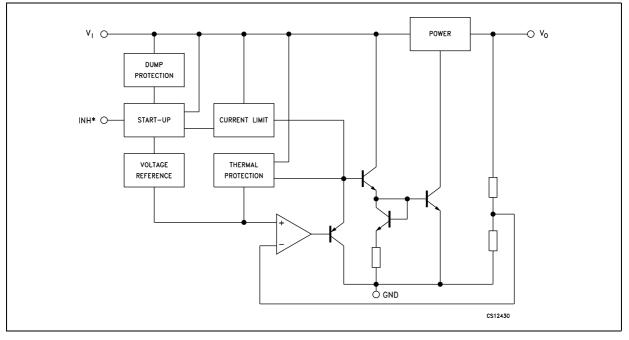



Figure 2. Schematic diagram for fixed version

* Only for version with inhibit function.

2 Pin configuration

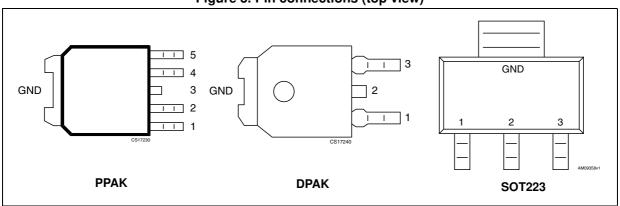
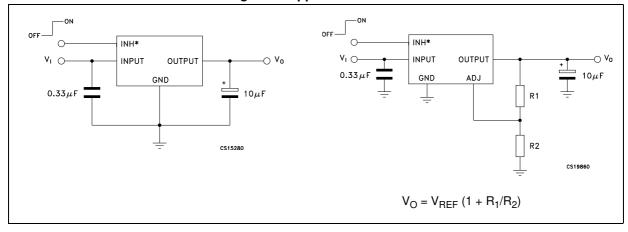


Figure 3. Pin connections (top view)


Table 2. Pin description

Symbol	PPAK	DPAK	SOT223
VI	2	1	1
GND	3	2	2
V _O	4	3	3
ADJ/N.C. ⁽¹⁾	5		
INHIBIT ⁽²⁾	1		

1. Not connected for fixed version.

2. Not internally pulled up; in order to assure the operating condition (device in ON mode), it must be connected to a positive voltage higher than 2 V.

Figure 4. Application circuit

* Only for version with inhibit function.

DocID10918 Rev 8

3 Maximum ratings

Symbol	Parameter Value		Unit
VI	DC input voltage	30 ⁽¹⁾	V
V _{INH}	Inhibit input voltage	14	V
Ι _Ο	Output current	Internally limited	mA
PD	Power dissipation	Internally limited	mW
T _{STG}	Storage temperature range	- 55 to 150	°C
T _{OP}	Operating temperature range	- 40 to 125	°C

Table 3. Absolute maximum ratings

1. Above 14 V the device is automatically in shut-down.

Note: Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

Table 4. Thermal data

Symbol	Parameter	DPAK	PPAK	SOT223	Unit
R _{thJC}	Thermal resistance junction-case	8	8	25	°C/W
R _{thJA}	Thermal resistance junction-ambient	100	100	110	°C/W

4 Electrical characteristics

 I_O = 10 mA, (*Note 4*) T_J = 25 °C, V_I = 3.5 V, V_{INH} = 2V, C_I = 330 nF, C_O = 10 μ F, unless otherwise specified.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
VI	Operating input voltage	I _O = 10 mA to 800 mA	2.5		13	V
M		$I_{O} = 10 \text{ mA to } 800 \text{ mA}, V_{I} = 3 \text{ to } 7 \text{ V}$	1.485	1.5	1.515	V
Vo	Output voltage	$T_{J} = -40$ to 125 °C	1.463		1.537	v
ΔV_{O}	Load regulation	I _O = 10 mA to 800 mA		0.2	1.0	%
ΔV_{O}	Line regulation	V _I = 3 to 13 V		0.06	0.5	%
SVR	Supply voltage rejection	f = 120 Hz, V _I = 3.8 ± 1 V, I _O = 400 mA (<i>Note 1</i>)	65	75		dB
		$I_{O} = 10 \text{ mA}, T_{J} = -40 \text{ to } 125 \text{ °C}$		2	5	
	Quiescent current	$I_{O} = 400 \text{ mA}, T_{J} = -40 \text{ to } 125 \text{ °C}$		8	20	mA
Ι _q		$I_{O} = 800 \text{ mA}, T_{J} = -40 \text{ to } 125 \text{ °C}$		14	35	
		V_I = 13 V, V_{INH} = GND, T_J = -40 to 125 °C		130	180	μA
I _{sc}	Short circuit current	R _L = 0		1.2		А
V_{IL}	Control input logic low	OFF MODE, $T_J = -40$ to 125 °C			0.8	V
V _{IH}	Control input logic high	ON MODE, $T_J = -40$ to 125 °C	2			V
I _{INH}	Control input current	V_{INH} = 13V, T_J = -40 to 125 °C		5	10	μA
eN	Output noise voltage	B _P = 10 Hz to 100 kHz, I _O = 100 mA (<i>Note 1</i>)		60		μV_{RMS}

- 2 Dropout voltage is defined as the input-to-output differential when the output voltage drops to 99% of its nominal value with $V_O + 1 V$ applied to V_I .
- 3 Reference voltage is measured between output and GND pins, with ADJ PIN tied to V_O.
- 4 In order to avoid any output voltage rise within the whole operating temperature range, due to output leakage current, a minimum load current of 2 mA is required.

 $I_O = 10$ mA, (*Note 4*) $T_J = 25$ °C, $V_I = 3.5$ V, $V_{INH} = 2$ V, $C_I = 330$ nF, $C_O = 10$ µF, unless otherwise specified.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
VI	Operating input voltage	I _O = 10 mA to 800 mA	2.5		13	V
N.	Output voltage	I _O = 10 mA to 800 mA, V _I = 3 to 7.3 V	1.782	1.8	1.818	V
Vo	Oulput voltage	T _J = -40 to 125 °C	1.755		1.845	v
ΔV_{O}	Load regulation	I _O = 10 mA to 800 mA		0.2	1.0	%
ΔV_{O}	Line regulation	V _I = 3 to 13 V		0.06	0.5	%
SVR	Supply voltage rejection	f = 120 Hz, V _I = 3.8 ± 1 V, I _O = 400 mA (<i>Note 1</i>)	62	72		dB
		$I_{O} = 150 \text{ mA}, T_{J} = -40 \text{ to } 125 \text{ °C} (Note 2)$		0.1		
V _{DROP}	Dropout voltage	$I_{O} = 400 \text{ mA}, T_{J} = -40 \text{ to } 125 \text{ °C} (Note 2)$		0.2		V
		$I_{O} = 800 \text{ mA}, T_{J} = -40 \text{ to } 125 \text{ °C} (Note 2)$		0.4		
		$I_{O} = 10 \text{ mA}, T_{J} = -40 \text{ to } 125 \text{ °C}$		2	5	
	Quiescent current	$I_{O} = 400 \text{ mA}, T_{J} = -40 \text{ to } 125 \text{ °C}$		8	20	mA
Ι _q		$I_{O} = 800 \text{ mA}, T_{J} = -40 \text{ to } 125 \text{ °C}$		14	35	
		$V_{I} = 13 \text{ V}, V_{INH} = \text{GND}, T_{J} = -40 \text{ to } 125 \text{ °C}$		130	180	μA
I _{sc}	Short circuit current	$R_{L} = 0$		1.2		А
V _{IL}	Control input logic low	OFF MODE, T _J = -40 to 125 °C			0.8	V
V _{IH}	Control input logic high	ON MODE, T _J = -40 to 125 °C	2			V
I _{INH}	Control input current	$V_{INH} = 13 \text{ V}, \text{ T}_{J} = -40 \text{ to } 125 \text{ °C}$		5	10	μA
eN	Output noise voltage	B _P = 10 Hz to 100 kHz, I _O = 100 mA (<i>Note 1</i>)		72		μV_{RMS}

- 2 Dropout voltage is defined as the input-to-output differential when the output voltage drops to 99% of its nominal value with $V_0 + 1$ V applied to V_1 .
- 3 Reference voltage is measured between output and GND pins, with ADJ PIN tied to V_O.
- 4 In order to avoid any output voltage rise within the whole operating temperature range, due to output leakage current, a minimum load current of 2 mA is required.

 I_O = 10 mA, (*Note 4*) T_J = 25 °C, V_I = 4.5 V, V_{INH} = 2 V, C_I = 330 nF, C_O = 10 μ F, unless otherwise specified.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
VI	Operating input voltage	I _O = 10 mA to 800 mA			13	V
Va	Output voltage	I _O = 10 mA to 800 mA, V _I = 3.5 to 8 V	2.475	2.5	2.525	v
Vo	Oulput voltage	T _J = -40 to 125 °C	2.438		2.562	v
ΔV_O	Load regulation	I _O = 10 mA to 800 mA		0.2	1.0	%
ΔV_O	Line regulation	V _I = 3.5 to 13 V		0.06	0.5	%
SVR	Supply voltage rejection	f = 120 Hz, V _I = 4.5 ± 1 V, I _O = 400 mA (<i>Note 1</i>)	55	70		dB
		$I_{O} = 150 \text{ mA}, T_{J} = -40 \text{ to } 125 \text{ °C} (Note 2)$		0.1		
V _{DROP}	Dropout voltage	$I_{O} = 400 \text{ mA}, T_{J} = -40 \text{ to } 125 \text{ °C} (Note 2)$		0.2		V
		$I_{O} = 800 \text{ mA}, T_{J} = -40 \text{ to } 125 \text{ °C} (Note 2)$		0.4	0.7	
		$I_{O} = 10 \text{ mA}, T_{J} = -40 \text{ to } 125 \text{ °C}$		2	5	
	Quiescent current	$I_{O} = 400 \text{ mA}, T_{J} = -40 \text{ to } 125 \text{ °C}$		8	20	mA
I _q		$I_{O} = 800 \text{ mA}, T_{J} = -40 \text{ to } 125 \text{ °C}$		14	35	
		$V_I = 13 \text{ V}, V_{INH} = \text{GND}, T_J = -40 \text{ to } 125 \text{ °C}$		130	180	μA
I _{sc}	Short circuit current	$R_{L} = 0$		1.2		А
V _{IL}	Control input logic low	OFF MODE, T _J = -40 to 125 °C			0.8	V
V _{IH}	Control input logic high	ON MODE, T _J = -40 to 125 °C	2			V
I _{INH}	Control input current	V_{INH} = 13 V, T_J = -40 to 125 °C		5	10	μA
eN	Output noise voltage	B _P = 10 Hz to 100 kHz, I _O = 100 mA (<i>Note 1</i>)		100		μV_{RMS}

Table 7.	Electrical	characteristics	of	LD29080#25
----------	------------	-----------------	----	------------

- 2 Dropout voltage is defined as the input-to-output differential when the output voltage drops to 99% of its nominal value with $V_0 + 1$ V applied to V_1 .
- 3 Reference voltage is measured between output and GND pins, with ADJ PIN tied to V_O.
- 4 In order to avoid any output voltage rise within the whole operating temperature range, due to output leakage current, a minimum load current of 2 mA is required.

 $I_O = 10$ mA, (*Note 4*) $T_J = 25$ °C, $V_I = 5.3$ V, $V_{INH} = 2$ V, $C_I = 330$ nF, $C_O = 10$ µF, unless otherwise specified.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
VI	Operating input voltage	I _O = 10mA to 800mA			13	V
Vo	Output voltage	$I_{O} = 10 \text{ mA to } 800 \text{ mA}, V_{I} = 4.3 \text{ to } 8.8 \text{ V}$	3.267	3.3	3.333	V
•0	Oulput voltage	T _J = -40 to 125 °C	3.218		3.382	v
ΔV_{O}	Load regulation	I _O = 10 mA to 800 mA		0.2	1.0	%
ΔV_{O}	Line regulation	V _I = 4.3 to 13 V		0.06	0.5	%
SVR	Supply voltage rejection	f = 120 Hz, V _I = 5.3 ± 1 V, I _O = 400 mA (<i>Note 1</i>)	52	67		dB
		I_{O} = 150 mA, T_{J} = -40 to 125 °C (<i>Note 2</i>)		0.1		
V _{DROP}	Dropout voltage	$I_{O} = 400 \text{ mA}, T_{J} = -40 \text{ to } 125 \text{ °C} (Note 2)$		0.2		V
		I _O = 800 mA, T _J = -40 to 125 °C (<i>Note 2</i>)		0.4	0.7	
		$I_{O} = 10 \text{ mA}, T_{J} = -40 \text{ to } 125 \text{ °C}$		2	5	
1	Quiescent current	I _O = 400 mA, T _J = -40 to 125 °C		8	20	mA
Ι _q	Quiescent current	I _O = 800 mA, T _J = -40 to 125 °C		14	35	
		$V_I = 13 \text{ V}, V_{INH} = \text{GND}, T_J = -40 \text{ to } 125 \text{ °C}$		130	180	μA
I _{sc}	Short circuit current	$R_{L} = 0$		1.2		А
V _{IL}	Control input logic low	OFF MODE, T _J = -40 to 125 °C			0.8	V
V _{IH}	Control input logic high	ON MODE, T _J = -40 to 125 °C	2			V
I _{INH}	Control input current	$V_{INH} = 13 \text{ V}, \text{ T}_{J} = -40 \text{ to } 125 \text{ °C}$		5	10	μA
eN	Output noise voltage	B _P = 10 Hz to 100 kHz, I _O = 100 mA (<i>Note 1</i>)		132		μV_{RMS}

Table 8.	Electrical	characteristics	of L	_D29080#33
----------	------------	-----------------	------	------------

- 2 Dropout voltage is defined as the input-to-output differential when the output voltage drops to 99% of its nominal value with $V_0 + 1$ V applied to V_1 .
- 3 Reference voltage is measured between output and GND pins, with ADJ PIN tied to V_O.
- 4 In order to avoid any output voltage rise within the whole operating temperature range, due to output leakage current, a minimum load current of 2 mA is required.

 I_O = 10 mA, (*Note 4*) T_J = 25 °C, V_I = 7 V, V_{INH} = 2 V, C_I = 330 nF, C_O = 10 μ F, unless otherwise specified.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
VI	Operating input voltage	I _O = 10 mA to 800 mA			13	V
Va	Output voltage	I _O = 10 mA to 800 mA, V _I = 6 to 10.5 V	4.95	5	5.05	V
Vo	Oulput voltage	T _J = -40 to 125 °C	4.875		5.125	
ΔV_O	Load regulation	I _O = 10 mA to 800 mA		0.2	1.0	%
ΔV_O	Line regulation	V _I = 6 to 13 V		0.06	0.5	%
SVR	Supply voltage rejection	f = 120 Hz, V _I = 7 ± 1 V, I _O = 400 mA (<i>Note 1</i>)	49	64		dB
		$I_{O} = 150 \text{ mA}, T_{J} = -40 \text{ to } 125 \text{ °C} (Note 2)$		0.1		V
V _{DROP}	Dropout voltage	$I_{O} = 400 \text{ mA}, T_{J} = -40 \text{ to } 125 \text{ °C} (Note 2)$	0 mA, $T_J = -40$ to 125 °C (<i>Note 2</i>) 0.2	0.2		
		$I_{O} = 800 \text{ mA}, T_{J} = -40 \text{ to } 125 \text{ °C} (Note 2)$		0.4	0.7	
		$I_{O} = 10 \text{ mA}, T_{J} = -40 \text{ to } 125 \text{ °C}$		2	5	
	Quiescent current	$I_{O} = 400 \text{ mA}, T_{J} = -40 \text{ to } 125 \text{ °C}$		8	20	mA
Ι _q	Quescent current	$I_{O} = 800 \text{ mA}, T_{J} = -40 \text{ to } 125 \text{ °C}$		14	35	
		$V_I = 13 \text{ V}, V_{INH} = \text{GND}, T_J = -40 \text{ to } 125 \text{ °C}$		130	180	μA
I _{sc}	Short circuit current	$R_{L} = 0$		1.2		А
V _{IL}	Control input logic low	OFF MODE, T _J = -40 to 125 °C			0.8	V
V _{IH}	Control input logic high	ON MODE, T _J = -40 to 125 °C	2			V
I _{INH}	Control input current	V_{INH} = 13 V, T_J = -40 to 125 °C		5	10	μA
eN	Output noise voltage	B _P = 10 Hz to 100 kHz, I _O = 100 mA (<i>Note 1</i>)		180		μV_{RMS}

- 2 Dropout voltage is defined as the input-to-output differential when the output voltage drops to 99% of its nominal value with $V_0 + 1$ V applied to V_1 .
- 3 Reference voltage is measured between output and GND pins, with ADJ PIN tied to V_O.
- 4 In order to avoid any output voltage rise within the whole operating temperature range, due to output leakage current, a minimum load current of 2 mA is required.

 $I_O = 10$ mA, (*Note 4*) $T_J = 25$ °C, $V_I = 10$ V, $V_{INH} = 2$ V, $C_I = 330$ nF, $C_O = 10$ µF, unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
VI	Operating input voltage	I _O = 10 mA to 800 mA			13	V	
Va	Output voltage	$I_{\rm O} = 10 \text{ mA to } 800 \text{ mA}, V_{\rm I} = 9 \text{ to } 13 \text{ V}$ 7.92		8	8.08	v	
Vo	Oulput Voltage	$T_J = -40$ to 125 °C	7.80		8.20	v	
ΔV_{O}	Load regulation	I _O = 10 mA to 800 mA		0.2	1.0	%	
ΔV_{O}	Line regulation	V _I = 9 to 13 V		0.06	0.5	%	
SVR	Supply voltage rejection	f = 120 Hz, V _I = 10 \pm 1 V, I _O = 400 mA (<i>Note 1</i>)	45	59		dB	
		I_{O} = 150 mA, T_{J} = -40 to 125 °C (<i>Note 2</i>)		0.1			
V _{DROP}	Dropout voltage	$I_{O} = 400 \text{ mA}, T_{J} = -40 \text{ to } 125 \text{ °C} (Note 2)$ 0.2	0.2		V		
		I _O = 800 mA, T _J = -40 to 125 °C (<i>Note 2</i>)		0.4	0.7		
		$I_{O} = 10 \text{ mA}, T_{J} = -40 \text{ to } 125 \text{ °C}$		2	5		
	Quiescent current	$I_{O} = 400 \text{ mA}, T_{J} = -40 \text{ to } 125 \text{ °C}$		8	20	mA	
Ι _q		$I_{O} = 800 \text{ mA}, T_{J} = -40 \text{ to } 125 \text{ °C}$		14	35		
		V_{I} = 13 V, V_{INH} = GND, T_{J} = -40 to 125 °C		130	180	μA	
I _{sc}	Short circuit current	$R_L = 0$		1.2		А	
V _{IL}	Control input logic low	OFF MODE, $T_J = -40$ to 125 °C			0.8	V	
V _{IH}	Control input logic high	ON MODE, $T_J = -40$ to 125 °C	2			V	
I _{INH}	Control input current	V_{INH} = 13 V, T_J = -40 to 125 °C		5	10	μA	
eN	Output noise voltage	B _P = 10 Hz to 100 kHz, I _O = 100 mA (<i>Note 1</i>)		320		μV_{RMS}	

- 2 Dropout voltage is defined as the input-to-output differential when the output voltage drops to 99% of its nominal value with $V_0 + 1$ V applied to V_1 .
- 3 Reference voltage is measured between output and GND pins, with ADJ PIN tied to V_O.
- 4 In order to avoid any output voltage rise within the whole operating temperature range, due to output leakage current, a minimum load current of 2 mA is required.

 I_O = 10 mA, (*Note 4*) T_J = 25 °C, V_I = 11 V, V_{INH} = 2 V, C_I = 330 nF, C_O = 10 μ F, unless otherwise specified.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
VI	Operating input voltage	I _O = 10 mA to 800 mA			13	V	
V.	Output voltage	I _O = 10 mA to 800 mA, V _I = 9 to 13 V	8.91	9	9.09	V	
Vo	Oulput voltage	T _J = -40 to 125 °C	8.775		9.225	V	
ΔV_O	Load regulation	I _O = 10 mA to 800 mA		0.2	1.0	%	
ΔV_O	Line regulation	V _I = 10 to 13 V		0.06	0.5	%	
SVR	Supply voltage rejection	f = 120 Hz, V _I = 11 \pm 1 V, I _O = 400 mA (<i>Note 1</i>)	43	57		dB	
		I_{O} = 150 mA, T_{J} = -40 to 125 °C (<i>Note 2</i>)		0.1			
V _{DROP}	Dropout voltage	$I_{O} = 400 \text{ mA}, T_{J} = -40 \text{ to } 125 \text{ °C} (Note 2)$		0.2		V	
		I_{O} = 800 mA, T_{J} = -40 to 125 °C (<i>Note 2</i>)		0.4	0.7		
		$I_{O} = 10 \text{ mA}, T_{J} = -40 \text{ to } 125 \text{ °C}$		2	5		
	Quiescent current	$I_{O} = 400 \text{ mA}, \text{ T}_{J} = -40 \text{ to } 125 ^{\circ}\text{C}$		8	20	mA	
Iq		I_{O} = 800 mA, T_{J} = -40 to 125 °C		14	35		
		$V_{I} = 13 \text{ V}, V_{INH} = \text{GND}, T_{J} = -40 \text{ to } 125 \text{ °C}$		130	180	μA	
I _{sc}	Short circuit current	$R_{L} = 0$		1.2		А	
V _{IL}	Control input logic low	OFF MODE, T _J = -40 to 125 °C			0.8	V	
V _{IH}	Control input logic high	ON MODE, $T_J = -40$ to 125 °C	2			V	
I _{INH}	Control input current	V_{INH} = 13 V, T_J = -40 to 125 °C		5	10	μA	
eN	Output noise voltage	B _P = 10 Hz to 100 kHz, I _O = 100 mA (<i>Note 1</i>)		330		μV_{RMS}	

- 2 Dropout voltage is defined as the input-to-output differential when the output voltage drops to 99% of its nominal value with $V_0 + 1$ V applied to V_1 .
- 3 Reference voltage is measured between output and GND pins, with ADJ PIN tied to V_O.
- 4 In order to avoid any output voltage rise within the whole operating temperature range, due to output leakage current, a minimum load current of 2 mA is required.

 $I_O = 10$ mA, (*Note 4*) $T_J = 25$ °C, $V_I = 10$ V, $V_{INH} = 2$ V, $C_I = 330$ nF, $C_O = 10$ µF, unless otherwise specified.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
VI	Operating input voltage	I _O = 10 mA to 800 mA	2.5		13	V
ΔV_{O}	Load regulation	I _O = 10 mA to 800 mA		0.2	1.0	%
ΔV_{O}	Line regulation	$V_{I} = 2.5$ to 13 V, $I_{O} = 10$ mA		0.06	0.5	%
M	Deference veltage	$I_{O} = 10 \text{ mA to } 800 \text{ mA}, V_{I} = 2.5 \text{ to } 6.73 \text{ V}$	1.2177	1.23	1.2423	V
V _{REF}	Reference voltage	T _J = -40 to 125 °C (<i>Note 3</i>)	1.1993		1.2607	v
SVR	SVR Supply voltage rejection $f = 120 \text{ Hz}, \text{ V}_{\text{I}} = 3.23 \pm 1 \text{ V}, \text{ I}_{\text{O}} = 400 \text{ mA}$ (<i>Note 1</i>)		45	75		dB
		$I_{O} = 10 \text{ mA}, T_{J} = -40 \text{ to } 125 \text{ °C}$		2	5	mA
	Quiescent current	$I_{O} = 400 \text{ mA}, T_{J} = -40 \text{ to } 125 \text{ °C}$		8	20	
Ι _q	Quiescent current	$I_{\rm O} = 800$ mA, $T_{\rm J} = -40$ to 125 °C		14	35	
		$V_I = 13 \text{ V}, V_{INH} = \text{GND}, T_J = -40 \text{ to } 125 ^\circ\text{C}$		130	180	μA
I _{ADJ}	Adjust pin current	T _J = -40 to 125 °C			1	μA
I _{sc}	Short circuit current	$R_L = 0$		1.2		Α
V_{IL}	Control input logic low	OFF MODE, $T_J = -40$ to 125 °C			0.8	V
V _{IH}	Control input logic high	ON MODE, $T_J = -40$ to 125 °C	2			V
I _{INH}	Control input current	V_{INH} = 13 V, T_J = -40 to 125 °C		5	10	μA
eN	Output noise voltage	B _P = 10 Hz to 100 kHz, I _O = 100 mA (<i>Note 1</i>)		50		μV _{RMS}

- 2 Dropout voltage is defined as the input-to-output differential when the output voltage drops to 99% of its nominal value with $V_O + 1$ V applied to V_I .
- 3 Reference voltage is measured between output and GND pins, with ADJ PIN tied to V_O.
- 4 In order to avoid any output voltage rise within the whole operating temperature range, due to output leakage current, a minimum load current of 2 mA is required.

5 Typical characteristics

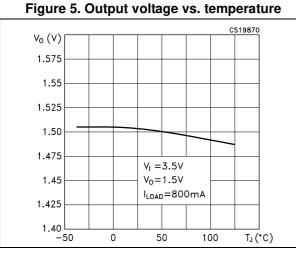


Figure 7. Dropout voltage vs. temperature

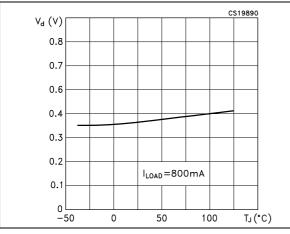


Figure 9. Quiescent current vs. output current

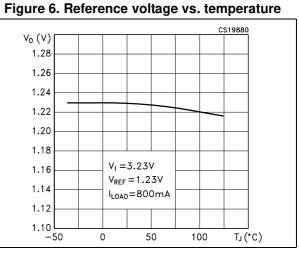


Figure 8. Dropout voltage vs. output current

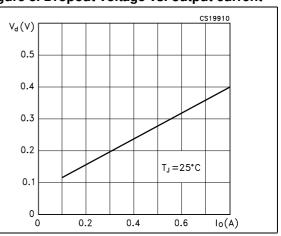
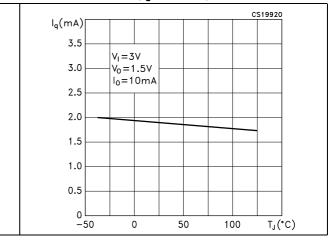
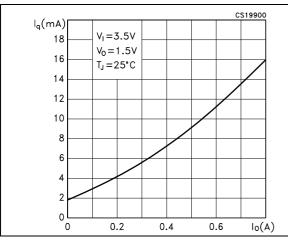




Figure 10. Quiescent current vs. temperature $(I_o = 10 \text{ mA})$

DocID10918 Rev 8

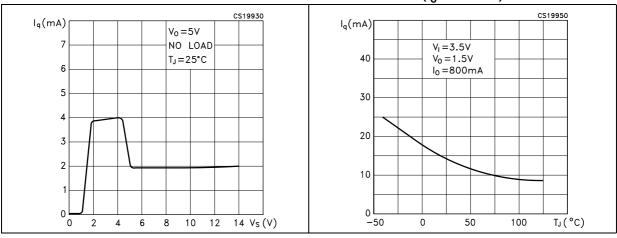
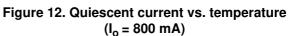
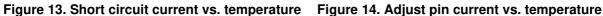




Figure 11. Quiescent current vs. supply voltage

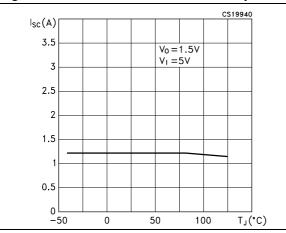
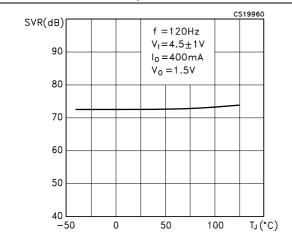



Figure 15. Supply voltage rejection vs. temperature

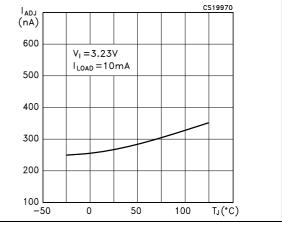


Figure 16. Output voltage vs. input voltage

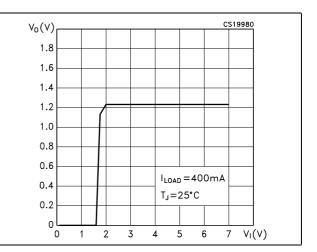


Figure 18. Line transient

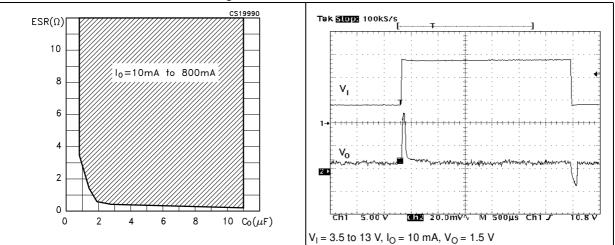
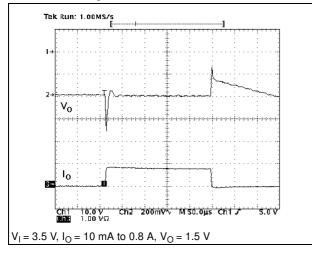
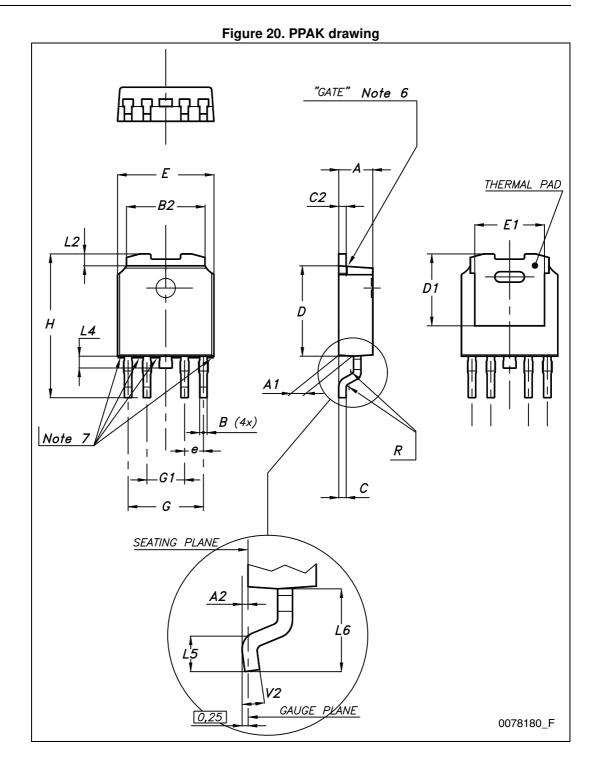



Figure 19. Load transient


6 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

Dim.		mm			
Dini.	Min.	Тур.	Max.		
A	2.2		2.4		
A1	0.9		1.1		
A2	0.03		0.23		
В	0.4		0.6		
B2	5.2		5.4		
С	0.45		0.6		
C2	0.48		0.6		
D	6		6.2		
D1		5.1			
E	6.4		6.6		
E1		4.7			
е		1.27			
G	4.9		5.25		
G1	2.38		2.7		
Н	9.35		10.1		
L2		0.8	1		
L4	0.6		1		
L5	1				
L6		2.8			
R		0.20			
V2	0°		8°		

Tabla	12	DDAV	maahan	inal	data
Table	13.	PPAK	mechan	icai	data



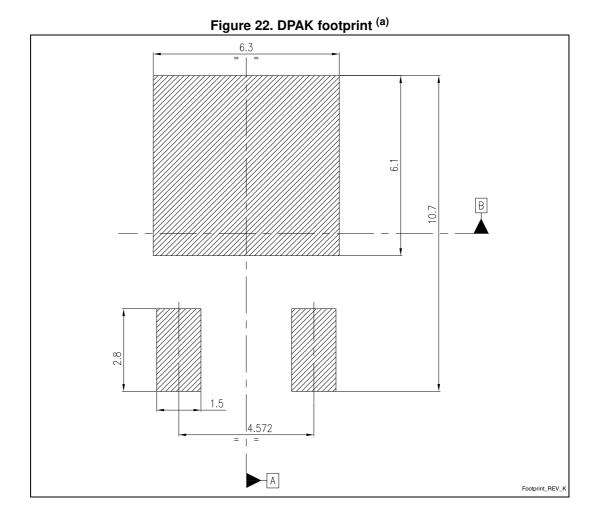
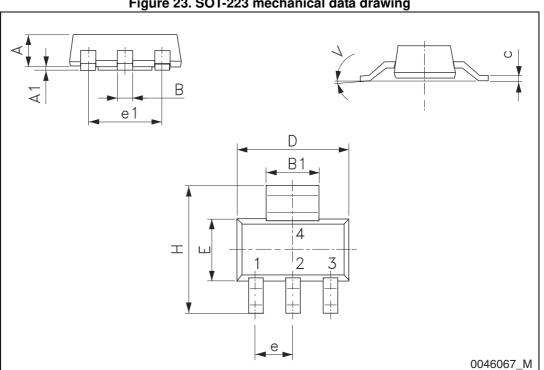

Dim	mm				
Dim.	Min.	Тур.	Max.		
A	2.20		2.40		
A1	0.90		1.10		
A2	0.03		0.23		
b	0.64		0.90		
b4	5.20		5.40		
С	0.45		0.60		
c2	0.48		0.60		
D	6.00		6.20		
D1		5.10			
E	6.40		6.60		
E1		4.70			
е		2.28			
e1	4.40		4.60		
Н	9.35		10.10		
L	1.00		1.50		
(L1)		2.80			
L2		0.80			
L4	0.60		1.00		
R		0.20			
V2	0°		8°		

Table 14. DPAK mechanical data



a. All dimensions are in millimeters

Dim.	mm				
	Min.	Тур.	Max.		
А			1.80		
A1	0.02		0.1		
В	0.60	0.70	0.85		
B1	2.90	3.00	3.15		
С	0.24	0.26	0.35		
D	6.30	6.50	6.70		
е		2.30			
e1		4.60			
E	3.30	3.50	3.70		
Н	6.70	7.00	7.30		
V			10°		

Table 15. SOT-223 mechanical data

Figure 23. SOT-223 mechanical data drawing

7 Packaging mechanical data

Таре				Reel			
Dim.	mm		Dim.	mm			
	Min.	Max.		Min.	Max.		
A0	6.8	7	А		330		
B0	10.4	10.6	В	1.5			
B1		12.1	С	12.8	13.2		
D	1.5	1.6	D	20.2			
D1	1.5		G	16.4	18.4		
E	1.65	1.85	Ν	50			
F	7.4	7.6	Т		22.4		
K0	2.55	2.75					
P0	3.9	4.1		Base qty.	2500		
P1	7.9	8.1		Bulk qty.	2500		
P2	1.9	2.1					
R	40						
Т	0.25	0.35					
W	15.7	16.3					

Table 16. PPAK and DPAK tape and reel mechanical data

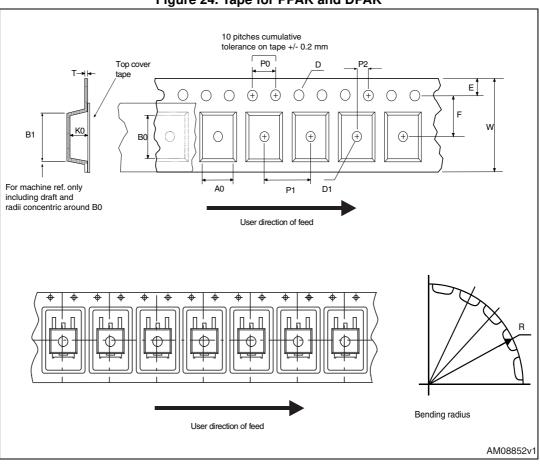
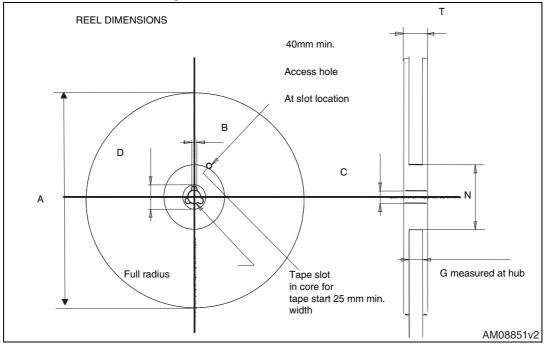



Figure 24. Tape for PPAK and DPAK

8 Revision history

Date	Revision	Changes	
15-Oct-2004	1	First release.	
20-Oct-2005	2	Order codes updated.	
14-May-2007	3	Order codes updated.	
26-Jan-2009	4	Modified: eN value in <i>Table 9 on page 10</i> .	
22-Feb-2011	5	Added: new order code <i>Table 1 on page 1</i> and mechanical data.	
12-Jan-2012	6	Modified: R _{thJA} and R _{thJC} value for SOT223 <i>Table 4 on page 5</i> .	
08-May-2012	7	Modified: pin connections for PPAK, DPAK and SOT223 Figure 3 on page 4.	
22-Nov-2013	8	 Part number LD29080xx changed to LD29080. Updated the Description in cover page, <i>Table 1: Device summary</i>. Updated <i>Section 5: Typical characteristics</i> and <i>Section 6: Package mech data</i>. Added <i>Section 7: Packaging mechanical data</i>. Minor text changes. 	

Table 17. Document revision history

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

DocID10918 Rev 8

