293D

Vishay Sprague

Solid Tantalum Surface Mount Chip Capacitors TANTAMOUNT[™], Molded Case, Standard Industrial Grade

PERFORMANCE / ELECTRICAL CHARACTERISTICS

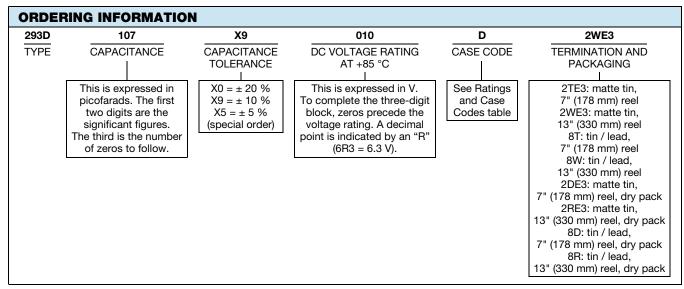
www.vishay.com/doc?40192

Operating Temperature: -55 °C to +125 °C (above 85 °C, voltage derating is required)

Capacitance Range: 0.10 μ F to 1000 μ F

Capacitance Tolerance: \pm 5 %, \pm 10 %, \pm 20 %

100 % Surge Current Tested (D and E Case Codes)


Voltage Rating: 4 V_{DC} to 75 V_{DC}

FEATURES

- Molded case available in six case codes
- Terminations: 100 % matte tin, standard, tin / lead available
- Compatible with "high volume" automatic pick and place equipment
- Meets EIA-535-BAAC mechanical and performance requirements
- Qualified to EIA-717
- Moisture sensitivity level 1
- Optical character recognition qualified
- Compliant terminations
- Material categorization: for definitions of compliance please see <u>www.vishav.com/doc?99912</u>

Note

- This datasheet provides information about parts that are RoHS-compliant and / or parts that are non-RoHS-compliant. For example, parts with lead (Pb) terminations are not RoHS-compliant. Please see the information / tables in this datasheet for details.
- APPLICATIONS
- Industrial
- Telecom infrastructure
- General purpose

Notes

- We reserve the right to supply higher voltage ratings and tighter capacitance tolerance capacitors in the same case size.
 Voltage substitutions will be marked with the higher voltage rating.
- We reserve the right to supply better series with more extensive screening.
- Dry pack as specified in J-STD-033 for MSL3. Applicable for D, E, and V cases only.

293D Vishay Sprague

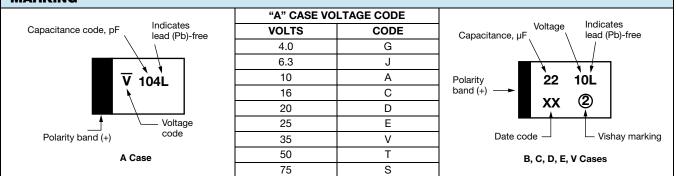
DIMENSIONS in inches [millimeters]								
Т		L Glue	e Pad	н н	W Glue Pad		_	
CASE CODE	EIA SIZE	L	w	н	Р	Τw	T _H (MIN.)	
А	3216-18	0.126 ± 0.008 [3.2 ± 0.20]	0.063 ± 0.008 [1.6 ± 0.20]	0.063 ± 0.008 [1.6 ± 0.20]	$\begin{array}{c} 0.031 \pm 0.012 \\ [0.80 \pm 0.30] \end{array}$	0.047 ± 0.004 [1.2 ± 0.10]	0.028 [0.70]	
В	3528-21	0.138 ± 0.008 [3.5 ± 0.20]	0.110 ± 0.008 [2.8 ± 0.20]	0.075 ± 0.008 [1.9 ± 0.20]	$\begin{array}{c} 0.031 \pm 0.012 \\ [0.80 \pm 0.30] \end{array}$	0.087 ± 0.004 [2.2 ± 0.10]	0.028 [0.70]	
С	6032-28	$\begin{array}{c} 0.236 \pm 0.012 \\ [6.0 \pm 0.30] \end{array}$	$\begin{array}{c} 0.126 \pm 0.012 \\ [3.2 \pm 0.30] \end{array}$	0.098 ± 0.012 [2.5 ± 0.30]	0.051 ± 0.012 [1.3 ± 0.30]	0.087 ± 0.004 [2.2 ± 0.10]	0.039 [1.0]	
D	7343-31	0.287 ± 0.012 [7.3 ± 0.30]	0.169 ± 0.012 [4.3 ± 0.30]	0.110 ± 0.012 [2.8 ± 0.30]	0.051 ± 0.012 [1.3 ± 0.30]	0.094 ± 0.004 [2.4 ± 0.10]	0.039 [1.0]	
E	7343-43	0.287 ± 0.012 [7.3 ± 0.30]	0.169 ± 0.012 [4.3 ± 0.30]	0.157 ± 0.012 [4.0 ± 0.30]	0.051 ± 0.012 [1.3 ± 0.30]	0.094 ± 0.004 [2.4 ± 0.10]	0.039 [1.0]	
V	7343-20	0.287 ± 0.012 [7.3 ± 0.30]	0.169 ± 0.012 [4.3 ± 0.30]	0.079 max [2.0 max]	0.051 ± 0.012 [1.3 ± 0.30]	0.094 ± 0.004 [2.4 ± 0.10]	0.039 [1.0]	

Note

• Glue pad (non-conductive, part of molded case) is dedicated for glue attachment (as user option).

RA'	TINGS AN	D CASE C	ODES							
μF	4 V	6.3 V	10 V	16 V	20 V	25 V	35 V	50 V	63 V	75 V
0.10						A	А	А		А
0.15							А	A/B		В
0.22							А	A/B		В
0.33						A	А	A/B		В
0.47			A		А	A	A/B	A/B/C		В
0.68				A	А	A	A/B	B/C		B/C
1.0			A	A	A/B	A/B	A/B	B/C		D
1.5		A	A	A/B	A/B	A/B	B/C	B/C/D		B/C/D
2.2	А	A	A/B	A/B	A/B	A/B/C	B/C	B/C/D		D
3.3	A	A/B	A/B	A/B	A/B/C	A/B/C	B/C/D	C/D	D	D
4.7	A/B	A/B	A/B/C	A/B/C	A/B/C	A/B/C/D	B/C/D	C/D/E	D	E
6.8	A/B	A/B	A/B/C	A/B/C	A/B/C	B/C/D	C/D	D/E		
10	A/B	A/B/C	A/B/C	A/B/C/D	B/C/D	B/C/D	C/D	D/E	E	
15	A/B/C	A/B/C	A/B/C	B/C	B/C/D	B/C/D	D/E	E		
22	A/B/C	A/B/C	A/B/C/D	B/C/D	B/C/D	C/D/E/V	D/E			
33	A/B/C	A/B/C	B/C/D	B/C/D	C / D	D/E				
47	A/B/C	A/B/C/D	B/C/D	C/D/E	D/E	D/E	E ⁽¹⁾			
68	B/C/D	B/C/D	B/C/D/E/V	D/E	D/E	E				
100	A/B/C/D	B/C/D/E	B/C/D/E/V	D/E/V	D/E					
120	D	D	E							
150	B/C/D	C/D/E	C/D/E	D/E						
220	B/C/D/E	C/D/E	D/E/V	E						
330	D/E	D/E	D/E							
470	D/E	D/E	E							
680	D/E	E								
1000	E	E								

Note

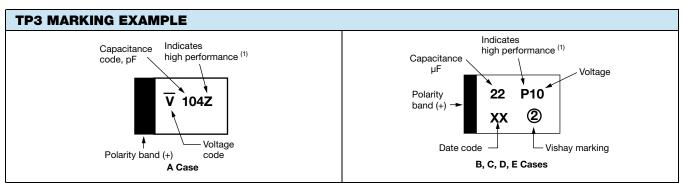

⁽¹⁾ 125 °C life test post test limits per AEC-Q200

2

2<u>9</u>3Г

MARKING

Marking


Capacitor marking includes an anode (+) polarity band, capacitance in microfarads and the voltage rating. "A" case capacitors use a letter code for the voltage and EIA capacitance code.

The Vishay identification is included if space permits. Capacitors rated at 6.3 V are marked 6 V.

A manufacturing date code is marked on all capacitors.

Capacitors may bear TP3 marking scheme if parts are substituted with high performance automotive grade TP3 family products. This includes, for example, letter "P" as shown below.

Call the factory for further explanation.

Note

(1) Capital letter indicates lead (Pb)-free.

STANDARD	RATINGS					
CAPACITANCE (μF)	CASE CODE	PART NUMBER	MAX. DCL AT +25 °C (μΑ)	MAX. DF AT +25 °C 120 Hz (%)	MAX. ESR AT +25 °C 100 kHz (Ω)	MAX. RIPPLE 100 kHz I _{RMS} (A)
		4 V _{DC} AT +85	°C; 2.7 V _{DC} AT +125	5 °C		
2.2	А	293D225(1)004A(2)	0.5	6	7.60	0.10
3.3	А	293D335(1)004A(2)	0.5	6	7.60	0.10
4.7	А	293D475(1)004A(2)	0.5	6	6.30	0.11
4.7	В	293D475(1)004B(2)	0.5	6	7.00	0.11
6.8	А	293D685(1)004A(2)	0.5	6	5.50	0.12
6.8	В	293D685(1)004B(2)	0.5	6	3.40	0.16
10	А	293D106(1)004A(2)	0.5	6	5.10	0.12
10	В	293D106(1)004B(2)	0.5	6	3.50	0.16
15	А	293D156(1)004A(2)	0.6	6	3.40	0.15
15	В	293D156(1)004B(2)	0.6	6	2.90	0.17
15	С	293D156(1)004C(2)	0.6	6	2.80	0.20

Note

• Part number definitions:

(1) Tolerance: X0, X9

(2) Terminations and packaging: 2TE3, 2WE3, 8T, 8W

(3) Lead (Pb)-free terminations and packaging codes: 2TE3, 2WE3, 2DE3, 2RE3

(4) Terminations and packaging: 2TE3, 2WE3, 8T, 8W, 2DE3, 2RE3, 8D, 8R

3

Vishay Sprague

	E3, 2WE3, 8T, 8W backaging codes: 2TE3, 2WE3, 2DE3, 2RE3 E3, 2WE3, 8T, 8W, 2DE3, 2RE3, 8D, 8R	
Revision: 11-May-16	4	Document Number: 40002
	For technical questions, contact: <u>tantalum@vishay.cor</u>	<u>m</u>
	TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCF TTO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vish</u>	

STANDARD	RATINGS
•••••••	

CASE CODE	PART NUMBER	AT +25 °C (μΑ)	AT +25 °C 120 Hz (%)	AT +25 °C 100 kHz (Ω)	100 kHz I _{RMS} (A)
	4 V _{DC} AT +85	°C; 2.7 V _{DC} AT +125			
А	293D226(1)004A(2)	0.9	6	2.90	0.16
В	293D226(1)004B(2)	0.9	6	2.50	0.18
С	293D226(1)004C(2)	0.9	6	1.80	0.25
А	293D336(1)004A(2)	1.3	6	2.90	0.16
В	293D336(1)004B(2)	1.3	6	2.00	0.21
С	293D336(1)004C(2)	1.3	6	1.80	0.25
А	293D476(1)004A(2)	1.9	14	2.50	0.17
В	293D476(1)004B(2)	1.9	6	1.90	0.21
С	293D476(1)004C(2)	1.9	6	1.80	0.25
В	293D686(1)004B(2)	2.7	6	1.90	0.21
	293D686(1)004C(2)	2.7	6	1.40	0.28
D	293D686(1)004D(4)	2.7	6	0.80	0.43
А	293D107X0004A(2)	10.0	30	2.50	0.22
	293D107(1)004B(2)		8	1.80	0.22
	293D107(1)004C(2)		6	0.80	0.37
	293D107(1)004D(4)		6	0.70	0.46
			6	0.60	0.51
			14	1.60	0.23
	() ()	6.0	12	0.70	0.40
	293D157(1)004D(4)	6.0	8	0.60	0.50
	293D227X0004B(2)		18		0.24
	293D227(1)004C(2)		8	0.70	0.40
			8	0.60	0.50
	() ()		8	0.50	0.57
			8		0.50
		13.2	8	0.50	0.57
		18.8	10	0.60	0.50
	() ()				0.57
					0.87
					0.57
					0.57
Α				2.90	0.16
					0.10
	., .,				0.11
					0.12
	() ()				0.12
					0.12
	., .,				0.12
					0.16
					0.15
					0.17
					0.19
					0.16
					0.18
	., .,				0.18
					0.25
	() ()				0.21 0.25
	B C A B C A B C B C	A 293D226(1)004A(2) B 293D226(1)004B(2) C 293D226(1)004C(2) A 293D336(1)004A(2) B 293D336(1)004A(2) B 293D336(1)004C(2) A 293D476(1)004A(2) B 293D476(1)004A(2) B 293D476(1)004C(2) B 293D476(1)004C(2) B 293D686(1)004D(4) A 293D686(1)004A(2) B 293D686(1)004A(2) B 293D686(1)004A(2) D 293D686(1)004A(2) B 293D107(1)004B(2) C 293D107(1)004B(2) C 293D107(1)004D(4) B 293D157(1)004B(2) C 293D157(1)004D(4) B 293D157(1)004D(4) B 293D227(1)004D(4) B 293D227(1)004D(4) E 293D37(1)004E(4) D 293D477(1)004E(4) D 293D477(1)004E(4) D 293D477(1)004E(4) D 293D475(1)6R3A(2)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4 V _{DC} AT +85 °C; 2.7 V _{DC} AT +125 °C A 293D226(1)004A(2) 0.9 6 B 293D226(1)004B(2) 0.9 6 C 293D336(1)004A(2) 1.3 6 B 293D336(1)004A(2) 1.3 6 C 293D336(1)004A(2) 1.3 6 C 293D476(1)004A(2) 1.9 6 C 293D476(1)004B(2) 1.9 6 C 293D476(1)004B(2) 2.7 6 D 293D686(1)004C(2) 2.7 6 D 293D686(1)004B(2) 4.0 8 C 293D107(1)004B(2) 4.0 8 D 293D107(1)004B(2) 4.0 8 D 293D107(1)004D(4) 4.8 6 D 293D107(1)004D(4) 4.8 6 D 293D177(1)004D(4) 4.8 8 D 293D177(1)004D(4) 4.8 8 D 293D27(1)004D(4) 8.8 8 D 293D27(1	4 V _{DC} AT +85 °C; 2.7 V _{DC} AT +125 °C A 293D226(1)0044(2) 0.9 6 2.50 B 293D226(1)0044(2) 0.9 6 2.50 C 293D226(1)0044(2) 0.9 6 1.80 A 293D336(1)0044(2) 1.3 6 2.90 B 293D336(1)0044(2) 1.3 6 1.80 A 293D336(1)004(2) 1.9 14 2.50 B 293D476(1)004(2) 1.9 6 1.90 C 293D686(1)004(2) 2.7 6 1.90 C 293D686(1)004(2) 2.7 6 1.40 D 293D686(1)004(2) 2.7 6 0.80 A 293D107(1)004(2) 4.0 8 1.80 C 293D686(1)004(2) 2.7 6 0.40 D 293D167(1)004(2) 4.0 8 1.80 C 293D167(1)004(2) 4.0 8 1.80 D 293D157(1)004(2) 6.0

293D Vishay Sprague

	RATINGS			MAY BE		MAX BIRT
CAPACITANCE (μF)	CASE CODE	PART NUMBER	MAX. DCL AT +25 °C (μΑ)	MAX. DF AT +25 °C 120 Hz (%)	MAX. ESR AT +25 °C 100 kHz (Ω)	MAX. RIPPL 100 kHz I _{RMS} (A)
		6.3 Vpc AT +8	5 °C; 4 V _{DC} AT +125		(/	¢ 7
33	A	293D336(1)6R3A(2)	2.0	14	2.50	0.17
33	В	293D336(1)6R3B(2)	2.0	6	1.90	0.21
33	C	293D336(1)6R3C(2)	2.0	6	1.50	0.27
47	A	293D476(1)6R3A(2)	2.8	12	1.60	0.22
47	В	293D476(1)6R3B(2)	2.8	6	1.90	0.21
47	C	293D476(1)6R3C(2)	2.8	6	1.40	0.28
47	D	293D476(1)6R3D(4)	2.8	6	0.80	0.43
68	В	293D686(1)6R3B(2)	4.1	6	1.80	0.22
68	C	293D686(1)6R3C(2)	4.1	6	0.80	0.22
68	D	293D686(1)6R3D(4)	4.1	6	0.70	0.46
100	B	293D107(1)6R3B(2)	6.0	15	1.70	0.40
100	C	293D107(1)6R3C(2)	6.0	6	0.80	0.22
100	D	293D107(1)6R3D(4)	6.0	6	0.70	0.37
100	E	293D107(1)6R3E(4)	6.0	8	0.70	0.40
120	D	., .,	6.3	8	0.70	0.49
150	C	293D127(1)6R3D(4) 293D157(1)6R3C(2)	9.0	8	0.70	0.40
	D					
150	E	293D157(1)6R3D(4)	9.0	8	0.60	0.50
150		293D157(1)6R3E(4)	9.0	8	0.50	0.57
220	C	293D227(1)6R3C(2)	13.9	14	0.70	0.39
220	D	293D227(1)6R3D(4)	13.2	8	0.60	0.50
220	E	293D227(1)6R3E(4)	13.2	8	0.50	0.57
330	D	293D337(1)6R3D(4)	19.8	8	0.60	0.50
330	E	293D337(1)6R3E(4)	19.8	8	0.50	0.57
470	D	293D477(1)6R3D(4)	28.2	14	0.50	0.55
470	E	293D477(1)6R3E(4)	28.2	10	1.50	0.57
680	E	293D687(1)6R3E(4)	42.8	20	0.50	0.57
1000	E	293D108X06R3E(4)	63.0	30	0.40	0.64
0.47	•		5 °C; 7 V _{DC} AT +125		11.00	0.07
0.47	A	293D474(1)010A(2)	0.5	4	14.00	0.07
1.0	A	293D105(1)010A(2)	0.5	4	9.60	0.09
1.5	A	293D155(1)010A(2)	0.5	6	8.00	0.10
2.2	A	293D225(1)010A(2)	0.5	6	6.30	0.11
2.2	В	293D225(1)010B(2)	0.5	6	4.60	0.14
3.3	A	293D335(1)010A(2)	0.5	6	5.50	0.12
3.3	В	293D335(1)010B(2)	0.5	6	5.50	0.12
4.7	A	293D475(1)010A(2)	0.5	6	5.00	0.12
4.7	В	293D475(1)010B(2)	0.5	6	3.40	0.16
4.7	С	293D475(1)010C(2)	0.5	6	2.30	0.22
6.8	A	293D685(1)010A(2)	0.7	6	4.20	0.13
6.8	В	293D685(1)010B(2)	0.7	6	2.90	0.17
6.8	С	293D685(1)010C(2)	0.7	6	1.90	0.24
10	A	293D106(1)010A(2)	1.0	6	3.40	0.15
10	В	293D106(1)010B(2)	1.0	6	2.50	0.18
10	С	293D106(1)010C(2)	1.0	6	1.80	0.25
15	Α	293D156(1)010A(2)	1.5	6	2.90	0.16
15	В	293D156(1)010B(2)	1.5	6	2.00	0.21
15	С	293D156(1)010C(2)	1.5	6	1.80	0.25
22	Α	293D226(1)010A(2)	2.2	8	2.50	0.17
22	В	293D226(1)010B(2)	2.2	6	1.90	0.21
22	С	293D226(1)010C(2)	2.2	6	1.50	0.27
22	D	293D226(1)010D(4)	2.2	6	1.50	0.32

Note

• Part number definitions:

(1) Tolerance: X0, X9

(1) Forminations and packaging: 2TE3, 2WE3, 8T, 8W
(3) Lead (Pb)-free terminations and packaging codes: 2TE3, 2WE3, 2DE3, 2RE3
(4) Terminations and packaging: 2TE3, 2WE3, 8T, 8W, 2DE3, 2RE3, 8D, 8R

5

For technical questions, contact: <u>tantalum@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

SHAY

Vishay Sprague

293D

STANDARD	RATINGS					
CAPACITANCE (µF)	CASE CODE	PART NUMBER	MAX. DCL AT +25 °C (μΑ)	MAX. DF AT +25 °C 120 Hz (%)	MAX. ESR AT +25 °C 100 kHz (Ω)	MAX. RIPPLE 100 kHz I _{RMS} (A)
			5 °C; 7 V _{DC} AT +125	°C		
33	В	293D336(1)010B(2)	3.3	6	1.90	0.21
33	С	293D336(1)010C(2)	3.3	6	1.40	0.28
33	D	293D336(1)010D(4)	3.3	6	0.80	0.43
47	В	293D476(1)010B(2)	4.7	6	1.80	0.22
47	С	293D476(1)010C(2)	4.7	6	1.10	0.32
47	D	293D476(1)010D(4)	4.7	6	0.70	0.46
68	В	293D686(1)010B(2)	6.8	14	1.80	0.22
68	С	293D686(1)010C(2)	6.8	6	1.00	0.33
68	D	293D686(1)010D(4)	6.8	6	0.70	0.46
68	E	293D686(1)010E(4)	6.8	6	0.80	0.45
68	V	293D686(1)010V(3)	6.8	6	0.70	0.42
100	В	293D107X0010B(2)	10.0	25	2.50	0.18
100	С	293D107(1)010C(2)	10.0	8	0.90	0.35
100	D	293D107(1)010D(4)	10.0	8	0.60	0.50
100	E	293D107(1)010E(4)	10.0	8	0.70	0.49
100	V	293D107(1)010V(3)	10.0	8	0.70	0.42
120	E	293D127(1)010E(4)	12.0	6	1.00	0.41
150	С	293D157X0010C(2)	15.0	20	0.90	0.35
150	D	293D157(1)010D(4)	15.0	8	0.60	0.50
150	E	293D157(1)010E(4)	15.0	8	0.50	0.57
220	D	293D227(1)010D(4)	22.0	8	0.60	0.50
220	E	293D227(1)010E(4)	22.0	8	0.50	0.57
220	V	293D227(1)010V(3)	30.0	12	0.50	0.50
330	D	293D337(1)010D(4)	33.0	15	0.50	0.57
330 470	E	293D337(1)010E(4)	33.0 47.0	10 15	0.50	0.57
470	E	293D477(1)010E(4)			0.50	0.57
0.68	^		0.5 °C; 10 V _{DC} AT +12	4	10.40	0.08
1.0	A A	293D684(1)016A(2) 293D105(1)016A(2)	0.5	4	9.30	0.08
1.5	A	293D105(1)016A(2) 293D155(1)016A(2)	0.5	6	9.30 6.70	0.09
1.5	В	293D155(1)016B(2)	0.5	6	6.40	0.12
2.2	A	293D225(1)016A(2)	0.5	6	5.90	0.12
2.2	В	293D225(1)016B(2)	0.5	6	4.60	0.14
3.3	A	293D335(1)016A(2)	0.5	6	5.00	0.14
3.3	В	293D335(1)016B(2)	0.5	6	3.50	0.12
4.7	A	293D475(1)016A(2)	0.8	6	5.00	0.12
4.7	В	293D475(1)016B(2)	0.8	6	2.90	0.12
4.7	C	293D475(1)016C(2)	0.8	6	2.90	0.19
6.8	Ă	293D685(1)016A(2)	1.1	6	4.20	0.13
6.8	В	293D685(1)016B(2)	1.1	6	2.50	0.18
6.8	C	293D685(1)016C(2)	1.1	6	1.90	0.24
10	A	293D106(1)016A(2)	1.6	6	3.00	0.16
10	В	293D106(1)016B(2)	1.6	6	2.00	0.21
10	C	293D106(1)016C(2)	1.6	6	1.80	0.25
10	D	293D106(1)016D(4)	2.5	6	1.20	0.35
15	B	293D156(1)016B(2)	2.4	6	2.00	0.21
15	C	293D156(1)016C(2)	2.4	6	1.50	0.27
22	B	293D226(1)016B(2)	3.5	6	1.90	0.21
22	C	293D226(1)016C(2)	3.5	6	1.40	0.28
22	D	293D226(1)016D(4)	3.5	6	0.80	0.43

Note

Part number definitions: ٠

(1) Tolerance: X0, X9

(2) Terminations and packaging: 2TE3, 2WE3, 8T, 8W

(3) Lead (Pb)-free terminations and packaging: 2TE3, 2WE3, 2DE3, 2RE3
(4) Terminations and packaging: 2TE3, 2WE3, 8T, 8W, 2DE3, 2RE3, 8D, 8R

6

For technical questions, contact: technical-questions, contact: tantalum@vishay.com

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

SHAY

Vishay Sprague

293D

STANDARD	RATINGS					
CAPACITANCE (µF)	CASE CODE	PART NUMBER	MAX. DCL AT +25 °C (μΑ)	MAX. DF AT +25 °C 120 Hz (%)	MAX. ESR AT +25 °C 100 kHz (Ω)	MAX. RIPPLE 100 kHz I _{RMS} (A)
		16 V _{DC} AT +85	°C; 10 V _{DC} AT +12	5 °C		
33	В	293D336(1)016B(2)	5.3	6	1.80	0.22
33	С	293D336(1)016C(2)	5.3	6	1.10	0.32
33	D	293D336(1)016D(4)	5.3	6	0.70	0.46
47	С	293D476(1)016C(2)	7.5	6	1.00	0.33
47	D	293D476(1)016D(4)	7.5	6	0.70	0.46
47	E	293D476(1)016E(4)	7.5	6	0.80	0.45
68	D	293D686(1)016D(4)	10.9	6	0.60	0.50
68	E	293D686(1)016E(4)	10.9	6	0.80	0.45
100	D	293D107(1)016D(4)	16.0	8	0.60	0.50
100	E	293D107(1)016E(4)	16.0	8	0.60	0.52
100	V	293D107(1)016V(3)	16.0	10	0.40	0.56
150	D	293D157(1)016D(4)	24.0	8	0.60	0.50
150	Е	293D157(1)016E(4)	24.0	8	0.50	0.57
220	Е	293D227(1)016E(4)	35.2	14	0.50	0.57
			°C; 13 V _{DC} AT +12	5 °C		
0.47	А	293D474(1)020A(2)	0.5	4	14.00	0.07
0.68	A	293D684(1)020A(2)	0.5	4	10.00	0.09
1.0	A	293D105(1)020A(2)	0.5	4	8.40	0.09
1.0	В	293D105(1)020B(2)	0.5	4	9.00	0.10
1.5	A	293D155(1)020A(2)	0.5	6	6.30	0.11
1.5	В	293D155(1)020B(2)	0.5	4.8	5.60	0.12
2.2	A	293D225(1)020A(2)	0.5	6	5.90	0.11
2.2	В	293D225(1)020B(2)	0.5	6	3.50	0.16
3.3	A	293D335(1)020A(2)	0.7	6	5.90	0.11
3.3	В	293D335(1)020B(2)	0.7	6	3.00	0.17
3.3	C	293D335(1)020C(2)	0.8	6	2.30	0.22
4.7	A	293D475(1)020A(2)	0.9	6	5.00	0.12
4.7	В	293D475(1)020B(2)	0.9	6	2.90	0.17
4.7	C	293D475(1)020C(2)	0.9	6	2.30	0.22
6.8	A	293D685(1)020A(2)	1.4	6	4.50	0.13
6.8	В	293D685(1)020B(2)	1.4	6	2.50	0.18
6.8	C	293D685(1)020C(2)	1.4	6	1.90	0.24
10	В	293D106(1)020B(2)	2.0	6	2.10	0.20
10	C	293D106(1)020C(2)	2.0	6	1.70	0.25
10	D	293D106(1)020D(4)	2.0	6	1.00	0.38
15	B	293D156(1)020B(2)	3.0	6	2.30	0.19
15	C	293D156(1)020C(2)	3.0	6	1.50	0.27
15	D	293D156(1)020D(4)	3.0	6	0.90	0.41
22	В	293D226(1)020B(2)	4.4	6	2.10	0.20
22	C	293D226(1)020C(2)	4.4	6	1.10	0.32
22	D	293D226(1)020D(4)	4.4	6	0.70	0.46
33	C	293D336(1)020C(2)	6.6	6	1.00	0.33
33	D	293D336(1)020D(4)	6.6	6	0.70	0.46
47	D	293D476(1)020D(4)	9.4	6	0.70	0.46
47	E	293D476(1)020E(4)	9.4	6	0.60	0.52
68	D	293D686(1)020D(4)	13.6	6	0.70	0.46
68	E	293D686(1)020E(4)	13.6	6	0.60	0.40
100	D	293D107(1)020D(4)	20.0	8	0.60	0.50
100	E	293D107(1)020E(4) 293D107(1)020E(4)	20.0	8	0.50	0.57

Note

Part number definitions: •

(1) Tolerance: X0, X9

(2) Terminations and packaging: 2TE3, 2WE3, 8T, 8W

(3) Lead (Pb)-free terminations and packaging codes: 2TE3, 2WE3, 2DE3, 2RE3
(4) Terminations and packaging: 2TE3, 2WE3, 8T, 8W, 2DE3, 2RE3, 8D, 8R

Revision: 11-May-16

For technical questions, contact: technical-questions, contact: tantalum@vishay.com

Document Number: 40002

Vishay Sprague

293D

STANDARD	RATINGS					
CAPACITANCE (µF)	CASE CODE	PART NUMBER	MAX. DCL AT +25 °C	MAX. DF AT +25 °C 120 Hz	MAX. ESR AT +25 °C 100 kHz	MAX. RIPPLE 100 kHz I _{RMS}
(141)			(μΑ)	(%)	(Ω)	(A)
		25 V _{DC} AT +85	5 °C; 17 V _{DC} AT +12	5 °C		
0.10	А	293D104(1)025A(2)	0.5	4	20.00	0.06
0.33	А	293D334(1)025A(2)	0.5	4	13.00	0.08
0.47	А	293D474(1)025A(2)	0.5	4	12.00	0.08
0.68	А	293D684(1)025A(2)	0.5	4	8.40	0.09
1.0	А	293D105(1)025A(2)	0.5	4	7.60	0.10
1.0	В	293D105(1)025B(2)	0.5	4	5.00	0.13
1.5	А	293D155(1)025A(2)	0.5	6	6.70	0.11
1.5	В	293D155(1)025B(2)	0.5	6	4.60	0.14
2.2	А	293D225(1)025A(2)	0.6	6	6.30	0.11
2.2	В	293D225(1)025B(2)	0.6	6	3.80	0.15
2.2	C	293D225(1)025C(2)	0.6	6	3.20	0.19
3.3	Ă	293D335(1)025A(2)	0.8	6	6.00	0.13
3.3	В	293D335(1)025B(2)	0.8	6	3.10	0.14
3.3	C	., .,	0.8	6	2.30	0.17
3.3 4.7	A	293D335(1)025C(2)	0.8 1.2	6 6	2.30 5.50	0.22
		293D475(1)025A(2)				
4.7	В	293D475(1)025B(2)	1.2	6	2.80	0.17
4.7	С	293D475(1)025C(2)	1.2	6	2.00	0.24
4.7	D	293D475(1)025D(4)	1.2	6	1.30	0.34
6.8	В	293D685(1)025B(2)	1.7	6	2.40	0.19
6.8	С	293D685(1)025C(2)	1.7	6	1.70	0.25
6.8	D	293D685(1)025D(4)	1.7	6	1.10	0.37
10	В	293D106(1)025B(2)	2.5	6	2.30	0.19
10	С	293D106(1)025C(2)	2.5	6	1.50	0.27
10	D	293D106(1)025D(4)	2.5	6	1.00	0.39
15	В	293D156(1)025B(2)	3.8	6	2.20	0.20
15	С	293D156(1)025C(2)	3.8	6	1.20	0.30
15	D	293D156(1)025D(4)	3.8	6	0.80	0.43
22	С	293D226(1)025C(2)	5.5	6	1.20	0.30
22	D	293D226(1)025D(4)	5.5	6	0.70	0.46
22	E	293D226(1)025E(4)	5.5	6	0.80	0.45
22	V	293D226(1)025V(3)	5.5	6	0.70	0.42
33	D	293D336(1)025D(4)	8.3	6	0.70	0.46
33	E	293D336(1)025E(4)	8.3	6	0.60	0.52
47	D	293D476(1)025D(4)	11.8	8	0.70	0.46
47	E	293D476(1)025E(4)	11.8	6	0.60	0.52
68	E	293D686(1)025E(4)	17.0	8	0.60	0.52
	L		5 °C; 23 V _{DC} AT +12		0.00	0.02
0.10	A	293D104(1)035A(2)	0.5	4	20.00	0.06
0.15	A	293D154(1)035A(2)	0.5	4	18.00	0.07
0.22	A	293D224(1)035A(2)	0.5	4	15.00	0.07
0.33	A	293D334(1)035A(2)	0.5	4	13.00	0.08
0.33	A	293D334(1)035A(2) 293D474(1)035A(2)	0.5	4	10.00	0.08
0.47		293D474(1)035B(2)	0.5		8.00	0.09
	B	., .,		4		
0.68	A	293D684(1)035A(2)	0.5	4	7.60	0.10
0.68	B	293D684(1)035B(2)	0.5	4	6.50	0.11
1.0	A	293D105(1)035A(2)	0.5	4	7.50	0.10
1.0	В	293D105(1)035B(2)	0.5	4	5.00	0.13
1.5	В	293D155(1)035B(2)	0.5	6	4.20	0.14
1.5	С	293D155(1)035C(2)	0.5	6	3.80	0.17
2.2	В	293D225(1)035B(2)	0.8	6	3.80	0.15
2.2	С	293D225(1)035C(2)	0.8	6	2.90	0.20

Note

• Part number definitions:

(1) Tolerance: X0, X9

(1) Totrainee: X6, X6
(2) Terminations and packaging: 2TE3, 2WE3, 8T, 8W
(3) Lead (Pb)-free terminations and packaging codes: 2TE3, 2WE3, 2DE3, 2RE3
(4) Terminations and packaging: 2TE3, 2WE3, 8T, 8W, 2DE3, 2RE3, 8D, 8R

8

For technical questions, contact: <u>tantalum@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

SHAY

Vishay Sprague

293D

STANDARD	RATINGS					
CAPACITANCE (µF)	CASE CODE	PART NUMBER	MAX. DCL AT +25 °C (μΑ)	MAX. DF AT +25 °C 120 Hz (%)	MAX. ESR AT +25 °C 100 kHz (Ω)	MAX. RIPPLE 100 kHz I _{RMS} (A)
		35 V _{DC} AT +85	°C; 23 V _{DC} AT +12		(/	¢ 7
3.3	В	293D335(1)035B(2)	1.2	6	3.50	0.16
3.3	C	293D335(1)035C(2)	1.2	6	2.10	0.23
3.3	D	293D335(1)035D(4)	1.2	6	1.70	0.30
4.7	B	293D475(1)035B(2)	1.7	6	3.10	0.17
4.7	С	293D475(1)035C(2)	1.6	6	1.90	0.24
4.7	D	293D475(1)035D(4)	1.6	6	1.30	0.34
6.8	C	293D685(1)035C(2)	2.4	6	1.80	0.25
6.8	D	293D685(1)035D(4)	2.4	6	1.10	0.37
10	C	293D106(1)035C(2)	3.5	6	1.60	0.26
10	D	293D106(1)035D(4)	3.5	6	0.80	0.43
15	D	293D156(1)035D(4)	5.3	6	0.70	0.46
15	E	293D156(1)035E(4)	5.3	6	0.70	0.49
22	D	293D226(1)035D(4)	7.7	6	0.60	0.50
22	E	293D226(1)035E(4)	7.7	6	0.60	0.57
47	E	293D476X0035E(4)	20.0	10	0.60	0.52
			5 °C; 33 V _{DC} AT +12		0.00	0.02
0.10	A	293D104(1)050A(2)	0.5	4	19.00	0.06
0.15	A	293D154(1)050A(2)	0.5	4	17.00	0.07
0.15	В	293D154(1)050B(2)	0.5	4	14.00	0.08
0.22	A	293D224(1)050A(2)	0.5	4	15.00	0.07
0.22	В	293D224(1)050A(2) 293D224(1)050B(2)	0.5	4	12.00	0.08
0.33	A	293D334(1)050A(2)	0.5	4	14.00	0.07
0.33	В	293D334(1)050B(2)	0.5	4	10.00	0.09
0.33	A	293D474(1)050A(2)	0.5	4	12.00	0.08
0.47	В	293D474(1)050B(2)	0.5	4	8.40	0.00
0.47	C	293D474(1)050C(2)	0.5	4	6.70	0.13
0.68	В	293D684(1)050B(2)	0.5	4	7.60	0.10
0.68	C	293D684(1)050C(2)	0.5	4	5.90	0.14
1.0	В	293D105(1)050B(2)	0.5	4	6.70	0.14
1.0	C	293D105(1)050D(2) 293D105(1)050C(2)	0.5	4	4.60	0.16
1.5	В	293D155(1)050B(2)	0.8	6	6.00	0.10
1.5	C	293D155(1)050C(2)	0.8	6	3.40	0.12
1.5	D	293D155(1)050D(4)	0.8	6	2.90	0.13
2.2	B	293D135(1)050D(4) 293D225(1)050B(2)	1.1	6	3.50	0.23
2.2	C	293D225(1)050B(2) 293D225(1)050C(2)	1.1			0.10
2.2	D	293D225(1)050C(2) 293D225(1)050D(4)	1.1	6 6	2.90 2.10	0.20
3.3	C	293D225(1)050D(4) 293D335(1)050C(2)	1.7		2.50	0.27
3.3 3.3	D	293D335(1)050C(2) 293D335(1)050D(4)	1.7	6	2.50 1.70	0.21
3.3 4.7		., .,		6		0.30
4.7 4.7	C D	293D475(1)050C(2)	2.4 2.4	6	1.50 1.20	0.27
4.7		293D475(1)050D(4) 293D475(1)050E(4)	2.4	6		
4.7 6.8	E D	293D475(1)050E(4) 293D685(1)050D(4)	2.4 3.4	6	1.10 0.90	0.34
				6		0.41
6.8	E	293D685(1)050E(4)	3.4 5.0	6	0.90	0.43
10 10	D	293D106(1)050D(4)	5.0	6	0.80	0.43
10 15	E	293D106(1)050E(4)	5.0	6	0.80	0.45
15 Note	E	293D156(1)050E(4)	7.5	6	0.80	0.45

Note

Part number definitions: ٠

(1) Tolerance: X0, X9

(2) Terminations and packaging: 2TE3, 2WE3, 8T, 8W
(3) Lead (Pb)-free terminations and packaging codes: 2TE3, 2WE3, 2DE3, 2RE3
(4) Terminations and packaging: 2TE3, 2WE3, 8T, 8W, 2DE3, 2RE3, 8D, 8R

9

For technical questions, contact: <u>tantalum@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Vishay Sprague

293D

STANDARD	RATINGS					
CAPACITANCE (µF)	CASE CODE	PART NUMBER	MAX. DCL AT +25 °C (μΑ)	MAX. DF AT +25 °C 120 Hz (%)	MAX. ESR AT +25 °C 100 kHz (Ω)	MAX. RIPPLE 100 kHz I _{RMS} (A)
		63 V _{DC} AT +85	°C; 40 V _{DC} AT +12	5 °C		
3.3	D	293D335(1)063D(4)	2.1	6	1.50	0.32
4.7	D	293D475(1)063D(4)	3.0	6	1.10	0.37
10	E	293D106(1)063E(4)	6.3	6	1.00	0.41
		75 V _{DC} AT +85	°C; 50 V _{DC} AT +12	5 °C		
0.10	А	293D104(1)075A(2)	0.5	4	30.00	0.05
0.15	В	293D154(1)075B(2)	0.5	4	25.00	0.06
0.22	В	293D224(1)075B(2)	0.5	4	20.00	0.07
0.33	В	293D334(1)075B(2)	0.5	4	15.00	0.08
0.47	В	293D474(1)075B(2)	0.5	4	12.00	0.08
0.68	В	293D684(1)075B(2)	0.6	4	10.00	0.09
0.68	С	293D684(1)075C(2)	0.6	4	10.00	0.11
1.0	D	293D105(1)075D(4)	0.8	6	6.00	0.16
1.5	В	293D155(1)075B(2)	1.1	6	4.00	0.15
1.5	С	293D155(1)075C(2)	1.1	6	4.00	0.17
1.5	D	293D155(1)075D(4)	1.1	6	4.00	0.19
2.2	D	293D225(1)075D(4)	1.7	6	3.00	0.22
3.3	D	293D335(1)075D(4)	2.5	6	2.50	0.24
4.7	E	293D475(1)075E(4)	3.5	10	2.50	0.26

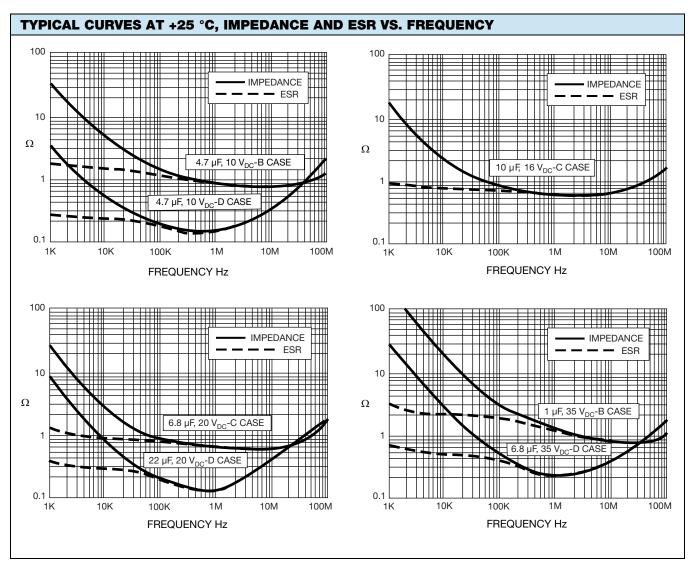
Note

• Part number definitions:

(1) Tolerance: X0, X9

(1) Forminations and packaging: 2TE3, 2WE3, 8T, 8W
(3) Lead (Pb)-free terminations and packaging codes: 2TE3, 2WE3, 2DE3, 2RE3
(4) Terminations and packaging: 2TE3, 2WE3, 8T, 8W, 2DE3, 2RE3, 8D, 8R

RECOMMENDED VOLTAGE DERATING GUIDELINES (for temperatures below +85 °C)						
STANDARD CONDITIONS. FOR EXAMPLE: OUTPUT FILTERS	STANDARD CONDITIONS. FOR EXAMPLE: OUTPUT FILTERS					
Capacitor Voltage Rating	Operating Voltage					
4.0	2.5					
6.3	3.6					
10	6.0					
16	10					
20	12					
25	15					
35	24					
50	28					
63	36					
75	42					
SEVERE CONDITIONS. FOR EXAMPLE: INPUT FILTERS						
Capacitor Voltage Rating	Operating Voltage					
4.0	2.5					
6.3	3.3					
10	5.0					
16	8.0					
20	10					
25	12					
35	15					
50	24					
63	31					
75	37					


10

For technical questions, contact: <u>tantalum@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

293D

Vishay Sprague

POWER DISSIPATION	
CASE CODE	MAXIMUM PERMISSIBLE POWER DISSIPATION AT +25 $^\circ$ C (W) in Free Air
A	0.075
В	0.085
С	0.110
D	0.150
E	0.165
V	0.125

11

STANDARD	PACKAGING	QUANTITY
----------	-----------	----------

	UNITS PER REEL			
CASE CODE	7" REEL	13" REEL		
A	2000	9000		
В	2000	8000		
С	500	3000		
D	500	2500		
E	400	1500		
V	1000	4000		

PRODUCT INFORMATION				
Guide for Molded Tantalum Capacitors				
Pad Dimensions	www.vishay.com/doc?40074			
Packaging Dimensions				
Moisture Sensitivity	www.vishay.com/doc?40135			
SELECTOR GUIDES				
Solid Tantalum Selector Guide	www.vishay.com/doc?49053			
Solid Tantalum Chip Capacitors	www.vishay.com/doc?40091			
FAQ				
Frequently Asked Questions	www.vishay.com/doc?40110			

Guide for Molded Tantalum Capacitors

INTRODUCTION

Tantalum electrolytic capacitors are the preferred choice in applications where volumetric efficiency, stable electrical parameters, high reliability, and long service life are primary considerations. The stability and resistance to elevated temperatures of the tantalum / tantalum oxide / manganese dioxide system make solid tantalum capacitors an appropriate choice for today's surface mount assembly technology.

Vishay Sprague has been a pioneer and leader in this field, producing a large variety of tantalum capacitor types for consumer, industrial, automotive, military, and aerospace electronic applications.

Tantalum is not found in its pure state. Rather, it is commonly found in a number of oxide minerals, often in combination with Columbium ore. This combination is known as "tantalite" when its contents are more than one-half tantalum. Important sources of tantalite include Australia, Brazil, Canada, China, and several African countries. Synthetic tantalite concentrates produced from tin slags in Thailand, Malaysia, and Brazil are also a significant raw material for tantalum production.

Electronic applications, and particularly capacitors, consume the largest share of world tantalum production. Other important applications for tantalum include cutting tools (tantalum carbide), high temperature super alloys, chemical processing equipment, medical implants, and military ordnance.

Vishay Sprague is a major user of tantalum materials in the form of powder and wire for capacitor elements and rod and sheet for high temperature vacuum processing.

THE BASICS OF TANTALUM CAPACITORS

Most metals form crystalline oxides which are non-protecting, such as rust on iron or black oxide on copper. A few metals form dense, stable, tightly adhering, electrically insulating oxides. These are the so-called "valve"metals and include titanium, zirconium, niobium, tantalum, hafnium, and aluminum. Only a few of these permit the accurate control of oxide thickness by electrochemical means. Of these, the most valuable for the electronics industry are aluminum and tantalum.

Capacitors are basic to all kinds of electrical equipment, from radios and television sets to missile controls and automobile ignitions. Their function is to store an electrical charge for later use.

Capacitors consist of two conducting surfaces, usually metal plates, whose function is to conduct electricity. They are separated by an insulating material or dielectric. The dielectric used in all tantalum electrolytic capacitors is tantalum pentoxide.

Tantalum pentoxide compound possesses high-dielectric strength and a high-dielectric constant. As capacitors are being manufactured, a film of tantalum pentoxide is applied to their electrodes by means of an electrolytic process. The film is applied in various thicknesses and at various voltages and although transparent to begin with, it takes on different colors as light refracts through it. This coloring occurs on the tantalum electrodes of all types of tantalum capacitors.

Rating for rating, tantalum capacitors tend to have as much as three times better capacitance / volume efficiency than aluminum electrolytic capacitors. An approximation of the capacitance / volume efficiency of other types of capacitors may be inferred from the following table, which shows the dielectric constant ranges of the various materials used in each type. Note that tantalum pentoxide has a dielectric constant of 26, some three times greater than that of aluminum oxide. This, in addition to the fact that extremely thin films can be deposited during the electrolytic process mentioned earlier, makes the tantalum capacitor extremely efficient with respect to the number of microfarads available per unit volume. The capacitance of any capacitor is determined by the surface area of the two conducting plates, the distance between the plates, and the dielectric constant of the insulating material between the plates.

COMPARISON OF CAPACITOR DIELECTRIC CONSTANTS				
DIELECTRIC	e DIELECTRIC CONSTANT			
Air or vacuum	1.0			
Paper	2.0 to 6.0			
Plastic	2.1 to 6.0			
Mineral oil	2.2 to 2.3			
Silicone oil	2.7 to 2.8			
Quartz	3.8 to 4.4			
Glass	4.8 to 8.0			
Porcelain	5.1 to 5.9			
Mica	5.4 to 8.7			
Aluminum oxide	8.4			
Tantalum pentoxide	26			
Ceramic	12 to 400K			

In the tantalum electrolytic capacitor, the distance between the plates is very small since it is only the thickness of the tantalum pentoxide film. As the dielectric constant of the tantalum pentoxide is high, the capacitance of a tantalum capacitor is high if the area of the plates is large:

$$C = \frac{eA}{t}$$

where

C = capacitance

e = dielectric constant

A = surface area of the dielectric

t = thickness of the dielectric

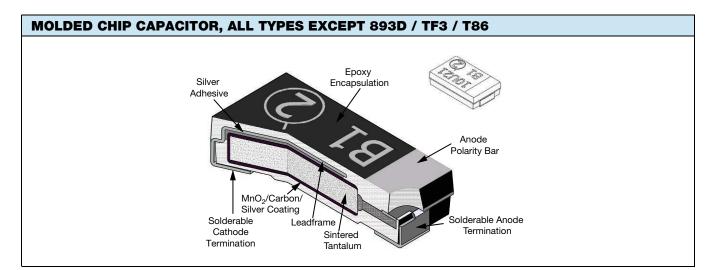
Tantalum capacitors contain either liquid or solid electrolytes. In solid electrolyte capacitors, a dry material (manganese dioxide) forms the cathode plate. A tantalum lead is embedded in or welded to the pellet, which is in turn connected to a termination or lead wire. The drawings show the construction details of the surface mount types of tantalum capacitors shown in this catalog.

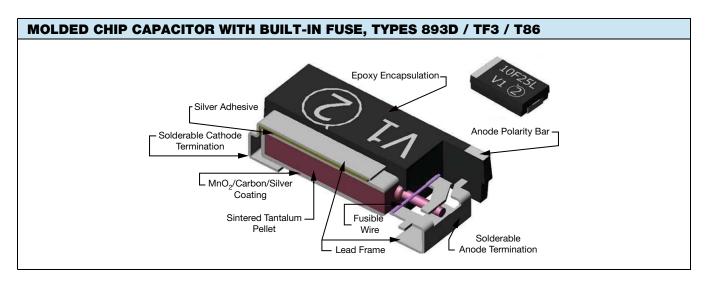
SOLID ELECTROLYTE TANTALUM CAPACITORS

Solid electrolyte capacitors contain manganese dioxide, which is formed on the tantalum pentoxide dielectric layer by impregnating the pellet with a solution of manganous nitrate. The pellet is then heated in an oven, and the manganous nitrate is converted to manganese dioxide.

The pellet is next coated with graphite, followed by a layer of metallic silver, which provides a conductive surface between the pellet and the Leadframe.

Molded Chip tantalum capacitor encases the element in plastic resins, such as epoxy materials. After assembly, the capacitors are tested and inspected to assure long life and reliability. It offers excellent reliability and high stability for consumer and commercial electronics with the added feature of low cost


Surface mount designs of "Solid Tantalum" capacitors use lead frames or lead frameless designs as shown in the accompanying drawings.


Vishay Sprague

TANTALUM CAPACITORS FOR ALL DESIGN CONSIDERATIONS

Solid electrolyte designs are the least expensive for a given rating and are used in many applications where their very small size for a given unit of capacitance is of importance. They will typically withstand up to about 10 % of the rated DC working voltage in a reverse direction. Also important are their good low temperature performance characteristics and freedom from corrosive electrolytes.

Vishay Sprague patented the original solid electrolyte capacitors and was the first to market them in 1956. Vishay Sprague has the broadest line of tantalum capacitors and has continued its position of leadership in this field. Data sheets covering the various types and styles of Vishay Sprague capacitors for consumer and entertainment electronics, industry, and military applications are available where detailed performance characteristics must be specified.

Revision: 11-Apr-16

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishav.com/doc?91000</u>

Molded Guide

Vishay Sprague

COMMERCIAL PRODUCTS

SOLID TANTAL	SOLID TANTALUM CAPACITORS - MOLDED CASE						
SERIES	293D	793DX-CTC3- CTC4	593D	TR3	TP3	TL3	
PRODUCT IMAGE		In the tree trees		The second second		A7875	
TYPE		Surface mo	ount TANTAMOUNT	™, molded case			
FEATURES	Standard industrial grade	CECC approved	Low ESR	Low ESR	High performance, automotive grade	Very low DCL	
TEMPERATURE RANGE			-55 °(C to +125 °C			
CAPACITANCE RANGE	0.1 μF to 1000 μF	0.1 μF to 100 μF	1 μF to 470 μF	0.47 μF to 1000 μF	0.1 μF to 470 μF	0.1 μF to 470 μF	
VOLTAGE RANGE	4 V to 75 V	4 V to 50 V	4 V to 50 V	4 V to 75 V	4 V to 50 V	4 V to 50 V	
CAPACITANCE TOLERANCE			± 10	%, ± 20 %			
LEAKAGE CURRENT	0.01 CV or 0.5 μA, whichever is greater					0.005 CV or 0.25 μA, whichever is greater	
DISSIPATION FACTOR	4 % to 30 %	4 % to 6 %	4 % to 15 %	4 % to 30 %	4 % to 15 %	4 % to 15 %	
CASE CODES	A, B, C, D, E, V	A, B, C, D	A, B, C, D, E	A, B, C, D, E, V, W	A, B, C, D, E	A, B, C, D, E	
TERMINATION	100 % matte tin standard, tin / lead available						

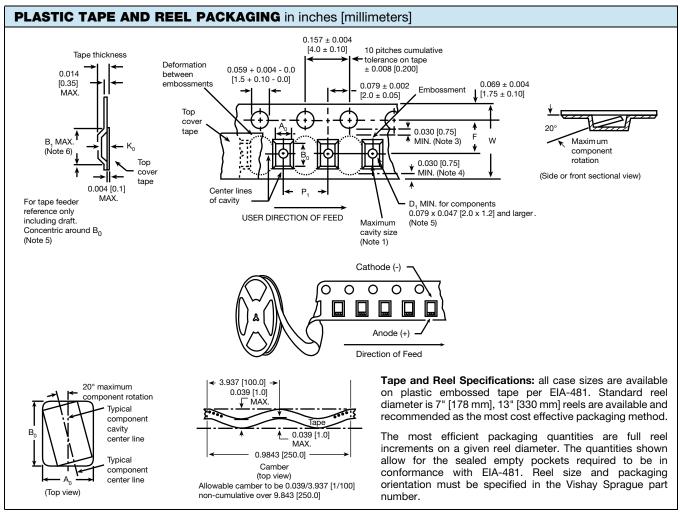
SOLID TANTALUM CAPACITORS - MOLDED CASE						
SERIES	TH3	TH4	TH5	893D	TF3	
PRODUCT IMAGE		228 B B	19024 91/054	THE SUL		
TYPE		Surface	mount Tantamount™, m	olded case		
FEATURES	High temperature +150 °C, automotive grade	High temperature +175 °C, automotive grade	Very high temperature +200 °C	Built-in fuse	Built-in fuse, low ESR	
TEMPERATURE RANGE	-55 °C to +150 °C	-55 °C to +175 °C	-55 °C to +200 °C	-55 °C to +125 °C		
CAPACITANCE RANGE	0.33 µF to 220 µF	10 µF to 47 µF	4.7 μF to 100 μF	0.47 μF to 680 μF	0.47 μF to 470 μF	
VOLTAGE RANGE	6.3 V to 50 V	6.3 V to 35 V	5 V to 24 V	4 V to 50 V	4 V to 50 V	
CAPACITANCE TOLERANCE			± 10 %, ± 20 %			
LEAKAGE CURRENT	0.01 CV or 0.5 μA, whichever is greater					
DISSIPATION FACTOR	4 % to 8 %	4.5 % to 6 %	6 % to 10 %	6 % to 15 %	6 % to 15 %	
CASE CODES	A, B, C, D, E	B, C, D	E	C, D, E	C, D, E	
TERMINATION	100 % matte tin standard, tin / lead and gold plated available	100 % matte tin	Gold plated	100 % matte	tin standard	

Revision: 11-Apr-16

Document Number: 40074

Molded Guide

Vishay Sprague


HIGH RELIABILITY PRODUCTS

SOLID TANTA	SOLID TANTALUM CAPACITORS - MOLDED CASE						
SERIES	ТМЗ	Т83	T86	CWR11	95158		
PRODUCT IMAGE	1945 D5 Unral 0 D6 Unral 0 D6	47715 ro 3					
ТҮРЕ	Tantamount™, molded case, Hi-Rel.		¹ , molded case, . COTS		, molded case, pproved		
FEATURES	High reliability, for Medical Instruments	High reliability, standard and low ESR	High reliability, built-in fuse, standard and low ESR	MIL-PRF-55365/8 qualified	Low ESR		
TEMPERATURE RANGE			-55 °C to +	125 °C			
CAPACITANCE RANGE	1 μF to 220 μF	0.1 μF to 470 μF	0.47 μF to 330 μF	0.1 μF to 100 μF	4.7 μF to 220 μF		
VOLTAGE RANGE	4 V to 20 V	4 V to 63 V		4 V to 50 V			
CAPACITANCE TOLERANCE	E	± 10 %, ± 20 %		± 5 %, ± 10 %, ± 20 %	± 10 %, ± 20 %		
LEAKAGE CURRENT	0.005 CV or 0.25 μA, whichever is greater	0.01 CV or 0.5 μA, whichever is greater					
DISSIPATION FACTOR	4 % to 8 %	4 % to 15 %	6 % to 16 %	4 % to 6 %	4 % to 12 %		
CASE CODES	A, B, C, D, E	A, B, C, D, E	C, D, E	A, B, C, D	C, D, E		
TERMINATION	100 % matte tin; tin / lead	100 % matte tin; tin / lead; tin / lead solder fused	100 % matte tin	Tin / lead; tin / lead solder fused	Tin / lead solder plated; gold plated		

Molded Guide

www.vishay.com

Vishay Sprague

Notes

- · Metric dimensions will govern. Dimensions in inches are rounded and for reference only.
- (1) A₀, B₀, K₀, are determined by the maximum dimensions to the ends of the terminals extending from the component body and / or the body dimensions of the component. The clearance between the ends of the terminals or body of the component to the sides and depth of the cavity (A₀, B₀, K₀) must be within 0.002" (0.05 mm) minimum and 0.020" (0.50 mm) maximum. The clearance allowed must also prevent rotation of the component within the cavity of not more than 20°.
- (2) Tape with components shall pass around radius "R" without damage. The minimum trailer length may require additional length to provide "R" minimum for 12 mm embossed tape for reels with hub diameters approaching N minimum.
- (3) This dimension is the flat area from the edge of the sprocket hole to either outward deformation of the carrier tape between the embossed cavities or to the edge of the cavity whichever is less.
- (4) This dimension is the flat area from the edge of the carrier tape opposite the sprocket holes to either the outward deformation of the carrier tape between the embossed cavity or to the edge of the cavity whichever is less.
- ⁽⁵⁾ The embossed hole location shall be measured from the sprocket hole controlling the location of the embossement. Dimensions of embossement location shall be applied independent of each other.
- $^{(6)}$ B₁ dimension is a reference dimension tape feeder clearance only.

CASE CODE	TAPE SIZE	В ₁ (МАХ.)	D ₁ (MIN.)	F	К ₀ (МАХ.)	P ₁	w
MOLDED		CITORS; ALL TY	'PES				
A	8 mm	0.165	0.039	0.138 ± 0.002	0.094	0.157 ± 0.004	0.315 ± 0.012
В	0 11111	[4.2]	[1.0]	[3.5 ± 0.05]	[2.4]	$[4.0 \pm 1.0]$	$[8.0 \pm 0.30]$
С							
D		0.00	0.050	0.017 . 0.00	0 177	0.015 . 0.004	0.470 + 0.010
E	12 mm	0.32 [8.2]	0.059 [1.5]	0.217 ± 0.00 [5.5 ± 0.05]	0.177 [4.5]	0.315 ± 0.004 [8.0 ± 1.0]	0.472 ± 0.012 [12.0 ± 0.30]
V		[0.2]	[1.0]	[0.0 ± 0.00]	[5]	[0.0 ± 1.0]	[12.0 ± 0.00]
W							

Revision: 11-Apr-16

5

Document Number: 40074

RECOMMENDED REFLOW PRO	FILES				
Capacitors should withstand reflow profile as	per J-STD-020 standard				
ATUF –	Max. ramp-up rate = 3 °C/s Max. ramp-down rate = 6 °C/s max. Preheat area Time 25 °C to peak TIME (s)	T _C -5°C			
PROFILE FEATURE	SnPb EUTECTIC ASSEMBLY	LEAD (Pb)-FREE ASSEMBLY			
Preheat / soak					
Temperature min. (T _{s min.})	100 °C	150 °C			
Temperature max. (T _{s max.})	150 °C	200 °C			
Time (t_s) from ($T_s min.$ to $T_s max.$)	60 s to 120 s	60 s to 120 s			
Ramp-up					
Ramp-up rate (T _L to T _p)	3 °C/s max.	3 °C/s max.			
Liquidous temperature (TL)	183 °C	217 °C			
Time (t_L) maintained above T_L	60 s to 150 s	60 s to 150 s			
Peak package body temperature (T _p) Depends on case size - see table below					
Time (tp) within 5 °C of the specified classification temperature (Tc)20 s30 s					
classification temperature (T _C)					
classification temperature (T _C) Time 25 °C to peak temperature	6 min max.	8 min max.			
classification temperature (T _C)	6 min max.	8 min max.			

PEAK PACKAGE BODY TEMPERATURE (T _p)				
CASE CODE	PEAK PACKAGE BODY TEMPERATURE (Tp)			
CASE CODE	SnPb EUTECTIC PROCESS	LEAD (Pb)-FREE PROCESS		
A, B, C, V	235 °C	260 °C		
D, E, W	220 °C	250 °C		

PAD DIMENSIONS	PAD DIMENSIONS in inches [millimeters]				
$ \begin{array}{c} \bullet & B \\ \bullet & B $					
CASE CODE	A (MIN.)	B (NOM.)	С (NOM.)	D (NOM.)	
MOLDED CHIP CAPACITORS, ALL TYPES					
А	0.071 [1.80]	0.067 [1.70]	0.053 [1.35]	0.187 [4.75]	
В	0.118 [3.00]	0.071 [1.80]	0.065 [1.65]	0.207 [5.25]	
С	0.118 [3.00]	0.094 [2.40]	0.118 [3.00]	0.307 [7.80]	
D	0.157 [4.00]	0.098 [2.50]	0.150 [3.80]	0.346 [8.80]	
E	0.157 [4.00]	0.098 [2.50]	0.150 [3.80]	0.346 [8.80]	
V	0.157 [4.00]	0.098 [2.50]	0.150 [3.80]	0.346 [8.80]	
W	0.185 [4.70]	0.098 [2.50]	0.150 [3.80]	0.346 [8.80]	

Revision: 11-Apr-16

6 For technical questions, contact: <u>tantalum@vishay.com</u> Document Number: 40074

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

GUIDE TO APPLICATION

1. **AC Ripple Current:** the maximum allowable ripple current shall be determined from the formula:

$$I_{\rm RMS} = \sqrt{\frac{P}{R_{\rm ESR}}}$$

where,

- P = power dissipation in W at +25 °C as given in the tables in the product datasheets (Power Dissipation).
- R_{ESR} = the capacitor equivalent series resistance at the specified frequency
- 2. **AC Ripple Voltage:** the maximum allowable ripple voltage shall be determined from the formula:

$$V_{RMS} = I_{RMS} \times Z$$

or, from the formula:

$$V_{\rm RMS} = Z_{\rm V} \frac{P}{R_{\rm ESR}}$$

where,

- P = power dissipation in W at +25 °C as given in the tables in the product datasheets (Power Dissipation).
- R_{ESR} = the capacitor equivalent series resistance at the specified frequency
- Z = the capacitor impedance at the specified frequency
- 2.1 The sum of the peak AC voltage plus the applied DC voltage shall not exceed the DC voltage rating of the capacitor.
- 2.2 The sum of the negative peak AC voltage plus the applied DC voltage shall not allow a voltage reversal exceeding 10 % of the DC working voltage at +25 °C.
- Reverse Voltage: solid tantalum capacitors are not intended for use with reverse voltage applied. However, they have been shown to be capable of withstanding momentary reverse voltage peaks of up to 10 % of the DC rating at 25 °C and 5 % of the DC rating at +85 °C.
- 4. **Temperature Derating:** if these capacitors are to be operated at temperatures above +25 °C, the permissible RMS ripple current shall be calculated using the derating factors as shown:

TEMPERATURE (°C)	DERATING FACTOR
+25	1.0
+85	0.9
+125	0.4
+150 (1)	0.3
+175 (1)	0.2
+200 (1)	0.1

Note

- ⁽¹⁾ Applicable for dedicated high temperature product series
- 5. **Power Dissipation:** power dissipation will be affected by the heat sinking capability of the mounting surface. Non-sinusoidal ripple current may produce heating effects which differ from those

Vishay Sprague

shown. It is important that the equivalent I_{RMS} value be established when calculating permissible operating levels. (Power dissipation calculated using +25 °C temperature rise).

6. **Printed Circuit Board Materials:** molded capacitors are compatible with commonly used printed circuit board materials (alumina substrates, FR4, FR5, G10, PTFE-fluorocarbon and porcelanized steel).

7. Attachment:

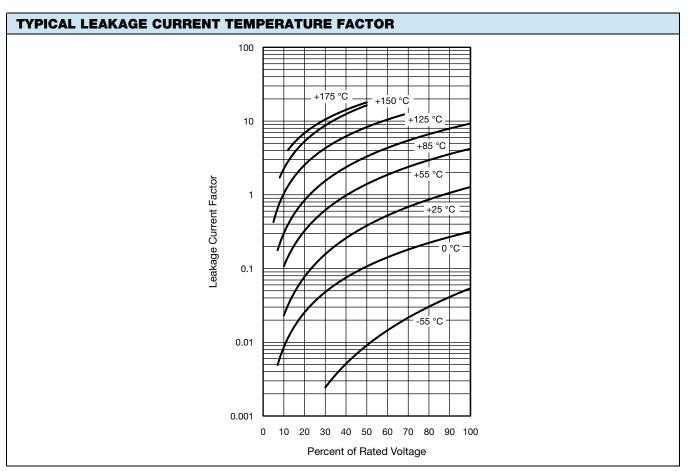
- 7.1 **Solder Paste:** the recommended thickness of the solder paste after application is $0.007" \pm 0.001"$ [0.178 mm ± 0.025 mm]. Care should be exercised in selecting the solder paste. The metal purity should be as high as practical. The flux (in the paste) must be active enough to remove the oxides formed on the metallization prior to the exposure to soldering heat. In practice this can be aided by extending the solder preheat time at temperatures below the liquidous state of the solder.
- 7.2 **Soldering:** capacitors can be attached by conventional soldering techniques; vapor phase, convection reflow, infrared reflow, wave soldering, and hot plate methods. The soldering profile charts show recommended time / temperature conditions for soldering. Preheating is recommended. The recommended maximum ramp rate is 2 °C per s. Attachment with a soldering iron is not recommended due to the difficulty of controlling temperature and time at temperature. The soldering iron must never come in contact with the capacitor.
- 7.2.1 **Backward and Forward Compatibility:** capacitors with SnPb or 100 % tin termination finishes can be soldered using SnPb or lead (Pb)-free soldering processes.
- 8. Cleaning (Flux Removal) After Soldering: molded capacitors are compatible with all commonly used solvents such as TES, TMS, Prelete, Chlorethane, Terpene and aqueous cleaning media. However, CFC / ODS products are not used in the production of these devices and are not recommended. Solvents containing methylene chloride or other epoxy solvents should be avoided since these will attack the epoxy encapsulation material.
- 8.1 When using ultrasonic cleaning, the board may resonate if the output power is too high. This vibration can cause cracking or a decrease in the adherence of the termination. DO NOT EXCEED 9W/I at 40 kHz for 2 min.
- 9. Recommended Mounting Pad Geometries: proper mounting pad geometries are essential for successful solder connections. These dimensions are highly process sensitive and should be designed to minimize component rework due to unacceptable solder joints. The dimensional configurations shown are the recommended pad geometries for both wave and reflow soldering techniques. These dimensions are intended to be a starting point for circuit board designers and may be fine tuned if necessary based upon the peculiarities of the soldering process and / or circuit board design.

Molded Chip Tantalum Capacitors

ITEM	PERFORMANCE CHAR	ACTERISTICS		
Category temperature range	-55 °C to +85 °C (to +125 °C with voltage derating)			
Capacitance tolerance	± 20 %, ± 10 %. Tested via bridge method, at +25 °C, 120 Hz			
Dissipation factor	Limit per Standard Ratings table. Tested via bridge method, at 25 °C, 120 Hz			
ESR	Limit per Standard Ratings table. Tested via bridge method, at 25 °C, 100 kHz			
Leakage current	After application of rated voltage applied to capacitors for 5 min using a steady source of power with 1 k Ω resistor in series with the capacitor under test, leakage current at 25 °C is not more than 0.01 CV or 0.5 μ A, whichever is greater. Note that the leakage current varies with temperature and applied voltage. See graph below for the appropriate adjustment factor.			
Capacitance change by temperature	+20 % max. (at +125 °C) +10 % max. (at +85 °C) -10 % max. (at -55 °C)			
Reverse voltage	Capacitors are capable of withstanding peak voltages in the reverse direction equal to: 10 % of the DC rating at +25 °C 5 % of the DC rating at +85 °C Vishay does not recommend intentional or repetitive application of reverse voltage			
Ripple current	For maximum ripple current values (at 25 °C) refer to relevant datasheet. If capacitors are to be used a temperatures above +25 °C, the permissible RMS ripple current (or voltage) shall be calculated using the derating factors: 1.0 at +25 °C; 0.9 at +85 °C; 0.4 at +125 °C			
Maximum operating and surge voltages vs. temperature	+85 °C		+125 °C	
	RATED VOLTAGE (V)	SURGE VOLTAGE (V)	CATEGORY VOLTAGE (V)	SURGE VOLTAGE (V)
	4	5.2	2.7	3.4
	6.3	8	4	5
	10	13	7	8
	16			
	10	20	10	12
	20	20 26	10 13	12 16
			-	
	20	26	13	16
	20 25	26 32	13 17	16 20
	20 25 35 ⁽³⁾	26 32 46	13 17 23	16 20 28
	20 25 35 ⁽³⁾ 35 ⁽⁴⁾	26 32 46 42	13 17 23 23	16 20 28 28
	20 25 35 ⁽³⁾ 35 ⁽⁴⁾ 50	26 32 46 42 65	13 17 23 23 33	16 20 28 28 40

Notes

• All information presented in this document reflects typical performance characteristics.


 $^{(1)}\,$ Capacitance values 15 μF and higher.

⁽²⁾ For 293D and TR3 only.

 $^{(3)}$ Capacitance values lower than 33 $\mu F.$

 $^{(4)}$ Capacitance values 33 μF and higher.

Note

At +25 °C, the leakage current shall not exceed the value listed in the Standard Ratings table.

At +85 °C, the leakage current shall not exceed 10 times the value listed in the Standard Ratings table.

At +125 °C, the leakage current shall not exceed 12 times the value listed in the Standard Ratings table.

At +150 °C, the leakage current shall not exceed 15 times the value listed in the Standard Ratings table.

At +175 °C, the leakage current shall not exceed 18 times the value listed in the Standard Ratings table.

ENVIRONMENTAL PERFORMANCE CHARACTERISTICS			
ITEM	CONDITION	POST TEST PERFOR	MANCE
Surge voltage	Post application of surge voltage (as specified in the table above) in series with a 33 Ω resistor at the rate of 30 s ON, 30 s OFF, for 1000 successive test cycles at 85 °C.	Capacitance change Dissipation factor Leakage current	Within ± 10 % of initial value Initial specified limit Initial specified limit
Life test at +85 °C	1000 h application of rated voltage at 85 °C. MIL-STD-202, method 108	Capacitance change Dissipation factor Leakage current	Within -20 % / +10 % of initial value Initial specified limit Shall not exceed 125 % of initial limit
Life test at +125 °C	1000 h application 2/3 of rated voltage at 125 °C. MIL-STD-202, method 108	Capacitance change Dissipation factor Leakage current	Within -20 % / +10 % of initial value Initial specified limit Shall not exceed 125 % of initial limit
Humidity tests	At 60 °C / 90 % RH 1000 h, biased	Capacitance change Dissipation factor Leakage current	Within -10 % / +20 % of initial value Not to exceed 150 % of initial limit Shall not exceed 200 % of initial limit
Thermal shock	MIL-STD-202, method 107, test condition A (-55 °C / +85 °C, for 1000 cycles)	Capacitance change Dissipation factor Leakage current	Within ± 10 % of initial value Initial specified limit Initial specified limit

MECHANICAL PERFORMANCE CHARACTERISTICS			
TEST CONDITION	CONDITION	POST TEST PERFORMANCE	
Terminal strength / shear force test	Apply a pressure load of 17.7 N for 60 s horizontally to the center of capacitor side body.	Capacitance changeWithin ± 10 % of initial valueDissipation factorInitial specified limitLeakage currentInitial specified limit	
		There shall be no mechanical or visual damage to capacitors post-conditioning.	
Vibration	MIL-STD-202, method 204, condition D, 10 Hz to 2000 Hz, 20 <i>g</i> peak, 8 h, at rated voltage	Electrical measurements are not applicable, since the same parts are used for shock (specified pulse) test. There shall be no mechanical or visual damage to capacitors post-conditioning.	
Shock (specified pulse)	MIL-STD-202, method 213, condition I, 100 <i>g</i> peak	Capacitance changeWithin ± 10 % of initial valueDissipation factorInitial specified limitLeakage currentInitial specified limit	
		There shall be no mechanical or visual damage to capacitors post-conditioning.	
Resistance to soldering heat	Recommended reflow profiles temperatures and durations are located within the Capacitor Series Guides	Capacitance changeWithin ± 10 % of initial valueDissipation factorInitial specified limitLeakage currentInitial specified limit	
	MIL-STD-202, method 210, condition B	There shall be no mechanical or visual damage to capacitors post-conditioning.	
Solderability and dissolution of metallization	MIL-STD-202, method 208, ANSI/J-STD-002, test B (SnPb) and B1 (lead (Pb)-free). Dissolution of metallization: method D. Does not apply to gold terminations.	There shall be no mechanical or visual damage to capacitors post-conditioning.	
Flammability	Encapsulation materials meet UL 94 V-0 with an oxygen index of 32 %.		

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.