Zur Startseite gehen
Wunschlisten
Schnäppchenmarkt
Artikelnummer: 811329

GOOGLE CORAL DEV BOARD MINI

    Zur Wunschliste hinzufügen
    Zur Wunschliste hinzufügen
    RS232/TTL Wandler mit MAX3232
    RS232/TTL Wandler mit MAX3232
    Artikelnummer: 810358
    sofort lieferbar, Lieferzeit 1-3 Werktage
    2,35 € inkl. MwSt. zzgl. Versand

      Zur Wunschliste hinzufügen
      Zur Wunschliste hinzufügen
      SD Speicherkartenmodul
      SD Speicherkartenmodul
      Artikelnummer: 810359
      sofort lieferbar, Lieferzeit 1-3 Werktage
      1,65 € inkl. MwSt. zzgl. Versand

      Produktinformationen "GOOGLE CORAL DEV BOARD MINI"
      Das Google Coral Dev Board Mini ist ein low-cost Single-Board Computer (SBC) mit eingebautem Real-Time Inferenz-Modul (Deep Learning / Machine Learning, EdgeTPU)!

      Benötigen Sie ein Development Board mit integrierter TPU (Tensor Processing Unit) für leistungsfähige Machine-Learning / Deep-Learning Algorithmen? Das Google Coral Dev Board Mini könnte, insbesondere falls Sie größere Stückzahlen in Ihrer Anwendung benötigen, und keine eigene Hardware designen möchten, eine kosteneffektive Wahl für Sie sein.

      Das Coral Dev Board Mini integriert einen MediaTek 8167 SoC mit der Edge TPU. Damit stellt es, im Gegensatz zum Coral USB Accelerator, eine stand-alone Plattform dar, auf der Sie Ihre Anwendung komplett laufen lassen können.

      Mit der Edge TPU können Tensor Flow Lite Modelle schnell und energiesparend für Inferenz genutzt werden. Ein besonderer Vorteil dieser Lösung: Ihre Daten bleiben lokal. Das hilft bei der Latenz, und natürlich beim Datenschutz! (Und entsprechend der Befolgung der relevanten Gesetze, beispielsweise der Datenschutz-Grundverordnung (DSGVO), auf Englisch GDPR genannt)

      Google nutzt zunehmend künstliche Intelligenz (AI) und maschinelles Lernen (ML) um seine Dienstleistungen zu realisieren. Dazu entwickelte es für seine Rechenzentren spezialisierte Prozessoren namens TPU ("tensor processing unit"), die die Algorithmen mit dem TensorFlow Framework schneller und energiesparender ausführen können. Beispielsweise wird Google Maps durch von Street View aufgenommene Straßenschilder verbessert, die mit Hilfe eines auf TensorFlow basierenden neuronalen Netzes analysiert werden. Der Clou: TensorFlow kann einfach in Python programmiert werden.

      Die Edge TPU unterstützt das TensorFlow Lite Framework. Die Edge TPU kann bis zu 4 Billionen Rechenoperationen pro Sekunde mit nur 2 W Verbrauch durchführen. TensorFlow Lite ist eine abgewandelte Variante von TensorFlow, die speziell auf den Bedarf mobiler Endgeräte und von embedded devices angepasst wurde. Viele TensorFlow Anwendungen lassen sich auch in TensorFlow Lite realisieren.

      Technische Daten:

      • SOC & SPEICHER
      MediaTek 8167 SoC
      Quad-Core ARM Cortex-A35, bis zu 1.5 GHz, 64-bit ARMv8-A
      Imagination PowerVR GE8300 GPU (unterstützt Vulkan 1.0)
      1080p/60fps HEVC & MPEG4 decoder
      2GB LPDDR3 RAM
      8GB eMMC Flash Speicher (mit Mendel Linux vorinstalliert)

    • KONNEKTIVITÄT & SCHNITTSTELLEN
    • Wi-Fi 5 (802.11a/b/g/n/ac, 2.4/5GHz) (MediaTek MT7658)
      Bluetooth 5.0 & Bluetooth Low Energy (BLE)
      1 x USB Typ-C Port (USB 2.0) für Daten, kann als Host und als Device arbeiten (OTG)
      1 x USB Typ-C Port für Spannungsversorgung
      3.5 mm Audiobuchse
      Digitales PDM Mikrofon
      2.54mm 2-pin Mono Lautsprecher Terminal
      microHDMI (v1.4), unterstützt Bildschirme mit bis zu 1920x1080 Auflösung
      24-pin Folienkabel (FFC) Stecker für MIPI-CSI2 Kamera (4 Lanes), unterstützt Kameras mit bis zu 8MP Auflösung
      24-pin Folienkabel (FFC) Stecker für MIPI-DSI Display (4 Lanes)
      microSD Slot (unterstützt max. 32GB SD Karten)
      40-pin GPIO Header (3.3V Logiklevel)

    • GPIO
    • I2C
      UART
      PWM
      SPI

    • EDGETPU
    • Google Edge TPU ML accelerator coprocessor
      4 TOPS (int8); 2 TOPS pro Watt
      an MediaTek 8167 via USB2.0 angebunden

    • SONSTIGES
    • A71CH Kryptochip, unterstützt Root of Trust
      ARM TrustZone (chip-to-cloud security)
      Power-Taster
      sowie frei programmierbarer Taster
      benötigt 5 V / 2 A USB-C Netzteil
      Abmessungen: 64 mm x 48 mm x 14.6 mm

      Software-Unterstützung:
    • MENDEL LINUX
    • Mendel Linux ist ein von Google entwickeltes Debian-Derivat, speziell für die Coral Plattform. Auf diesem Board ist ab Werk eine Version von Mendel Linux vorinstalliert, so dass Sie sofort loslegen können.

      Mendel Linux nutzt Debian's upstream binary packages, um möglichst hohe Kompatibilität zu bewahren, und Sicherheitsupdates zeitnah zu ermöglichen. Es unterstützt aktuell nur die Coral Dev Boards (auch als "enterprise" oder "phanbell" bekannt) und die Coral SoM Module (System-on-Module).

    • TENSORFLOW LITE
    • Das Coral Dev Board Mini unterstützt die Ausführung von (kompilierten) TensorFlow Lite Modellen auf seiner EdgeTPU.

    • AUTOML VISION EDGE
    • Das Coral Dev Board Mini unterstützt AutoML Vision Edge, um Modelle für Bild-Klassifikation (image classification models) schnell zum Einsatz bringen zu können.

      Downloads & Dokumentation:
    • DEV BOARD MINI
    • Einstieg mit dem Dev Board Mini (englisch)
      https://coral.ai/docs/dev-board-mini/get-started/

      GPIO Pinout & Nutzung
      https://coral.ai/docs/dev-board-mini/gpio/

      Dev Board Mini aktualisieren oder Flashen
      https://coral.ai/docs/dev-board-mini/reflash/

      Dev Board Mini Datenblatt (PDF, englisch)
      https://coral.ai/static/files/Coral-Dev-Board-Mini-datasheet.pdf

    • EDGETPU / INFERENZIERUNG
    • Edge TPU inferencing overview (Tensor Flow Lite Modelle)
      https://coral.ai/docs/edgetpu/inference/

      TensorFlow models on the Edge TPU
      https://coral.ai/docs/edgetpu/models-intro/

      Libcoral API (C++)
      https://coral.ai/docs/reference/cpp/

      Pipeline C++ API Referenz (erlaubt Verteilung der Rechenlast über mehrere Coral TPUs)
      https://coral.ai/docs/reference/cpp/pipeline/

      PyCoral API (Python)
      https://coral.ai/docs/reference/py/

      EdgeTPU FAQ
      https://coral.ai/docs/edgetpu/faq/

    • GEHÄUSE 3D DRUCK & SCHALTPLÄNE
    • Dev Board Mini Gehäuse Designdateien für den 3D-Druck (STEP und STL Dateien, .ZIP)
      https://storage.googleapis.com/site_and_emails_static_assets/Files/Coral-Dev-Board-Mini-case.zip

      Coral Dev Board Mini Schaltpläne und Board Layout
      https://github.com/google-coral/electricals/tree/master/dev_board_mini

      Verfügbare Downloads

      Farbe: mehrfarbig
      Menge: 1 St.

      0 von 0 Bewertungen

      Bewerten Sie dieses Produkt!

      Teilen Sie Ihre Erfahrungen mit anderen Kunden.